Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
DM1 is the most common form of myotonic muscular dystrophy diagnosed in children, with a prevalence ranging from 1 per 100,000 in Japan to 3-15 per 100,000 in Europe. The prevalence may be as high as 1 in 500 in regions such as Quebec, possibly due to the founder effect. In most populations, DM1 appears to be more common than DM2. However, recent studies suggest that type 2 may be as common as type 1 among people in Germany and Finland.
The incidence of congenital myotonic dystrophy is thought to be about 1:20,000. DM occurs in about 1 per 7,000–8,000 people and has been described in people from all over the world. It affects males and females approximately equally. About 30,000 people in the United States are affected.
Myotonic dystrophy is a genetic condition which is inherited in an autosomal dominant pattern and thus will be passed along to 50% of a carrier's offspring, on average. Myotonic dystrophy is one of several known trinucleotide repeat disorders. Certain areas of DNA have repeated sequences of two or three nucleotides.
Myotonic dystrophy (DM) is an inherited disease. A severe form of DM, congenital myotonic dystrophy, may appear in newborns of mothers who have DM. Congenital myotonic dystrophy can also be inherited via the paternal gene, although it is said to be relatively rare. Congenital means that the condition is present from birth.
The overall incidence of myotubular myopathy is 1 in 50,000 male live births. The incidence of other centronuclear myopathies is extremely rare, with there only being nineteen families identified with CNM throughout the world. The symptoms currently range from the majority who only need to walk with aids, from a stick to a walking frame, to total dependence on physical mobility aids such as wheelchairs and stand aids, but this latter variety is so rare that only two cases are known to the CNM "community".
Approximately 80% of males with a diagnosis of myotubular myopathy by muscle biopsy will have a mutation in MTM1 identifiable by genetic sequence analysis.
Many patients with myotubular myopathy die in infancy prior to receiving a formal diagnosis. When possible, muscle biopsy and genetic testing may still be helpful even after a neonatal death, since the diagnostic information can assist with family planning and genetic counseling as well as aiding in the accurate diagnosis of any relatives who might also have the same genetic abnormality.
Myotubular myopathy, also known as centeronuclear myopathy, is recognized by pain during exercise and difficulty walking. People affected by this disease typically are wheel-chair-bound by middle adulthood, have weakness in the muscles involved in eye movement, nerve function disorders, and some form of intellectual disability. Myotubular myopathy is very rare, with less than 50 families currently affected.
Genetically, myotubular myopathy can have two causes: autosomal dominant and autosomal recessive. When caused by a mutation in the DNM2 gene, the disorder is autosomal dominant, meaning it can be passed on by one mutated gene. When the mutation takes place in the BIN1 gene, the disease is instead autosomal recessive, and both genes must be mutated for the disease to be inherited. Autosomal recessive onset is most common.
Central core disease or central core myopathy was first described in 1956 and usually presents in infancy or early childhood as non-progressive mild proximal weakness that persists throughout life. Central core disease is believed to be more prevalent than currently reported, as it is hard to recognize and often misdiagnosed in early childhood. Central core disease has been found to be allelic with malignant hyperthermia, which is a life-threatening anesthetic reaction that causes a rise in body temperature, muscular rigidity and muscular breakdown, grossly elevated creatine kinase, and acidosis. Central core disease is caused by a mutation in the RYR1 gene.
New research resources have become available for the NM community, such as the CMDIR (registry) and the CMD-TR (biorepository). These two resources connect families and individuals interested in participating in research with the scientists that aim to treat or cure NM. Some research on NM seeks to better understand the molecular effects the gene mutations have on muscle cells and the rest of the body and to observe any connections NM may have to other diseases and health complications.
The Food and Drug Administration is recommending that physicians restrict prescribing high-dose Simvastatin (Zocor, Merck) to patients, given an increased risk of muscle damage. The FDA drug safety communication stated that physicians should limit using the 80-mg dose unless the patient has already been taking the drug for 12 months and there is no evidence of myopathy.
"Simvastatin 80 mg should not be started in new patients, including patients already taking lower doses of the drug," the agency states.
The exact mechanisms of these diseases are not well understood. GNE/MNK a key enzyme in the sialic acid biosynthetic pathway, and loss-of-function mutations in GNE/MNK may lead to a lack of sialic acid, which in turn could affect sialoglycoproteins. GNE knockout mice show problems similar to people with IBM and in people with IBM dystroglycan has been found to lack sialic acid. However, the part of the dystroglycan that is important in muscle function does not seem to be affected. Another protein, neural cell adhesion molecule is under-sialyated in people with IBM, but as of 2016 it had no known role in muscle function.
Distal muscular dystrophy (or distal myopathy) is a group of disorders characterized by onset in the hands or feet. Many types involve dysferlin, but it has been suggested that not all cases do.
Types include:
DYSF is also associated with limb-girdle muscular dystrophy type 2B.
Distal muscular dystrophy is a type of muscular dystrophy that affects the muscles of the extremities, the hands, feet, lower arms, or lower legs. The cause of this dystrophy is very hard to determine because it can be a mutation in any of at least eight genes and not all are known yet. These mutations can be inherited from one parent, autosomal dominant, or from both parents, autosomal recessive. Along with being able to inherit the mutated gene, distal muscular dystrophy has slow progress therefore the patient may not know that they have it until they are in their late 40’s or 50’s. There are eight known types of distal muscular dystrophy. They are Welander’s distal myopathy, Finnish (tibial) distal myopathy, Miyoshi distal myopathy, Nonaka distal myopathy, Gowers–Laing distal myopathy, hereditary inclusion-body myositis type 1, distal myopathy with vocal cord and pharyngeal weakness, and ZASP-related myopathy. All of these affect different regions of the extremities and can show up as early as 5 years of age to as late as 50 years old. Doctors are still trying to determine what causes these mutations along with effective treatments.
Prognosis strongly depends on which subtype of disease it is. Some are deadly in infancy but most are late onset and mostly manageable.
Currently there is no cure for myotubular or centronuclear myopathies. Treatment often focuses on trying to maximize functional abilities and minimize medical complications, and involvement by physicians specializing in Physical Medicine and Rehabilitation, and by physical therapists and occupational therapists.
Medical management generally involves efforts to prevent pulmonary complications, since lung infections can be fatal in patients lacking the muscle strength necessary to clear secretions via coughing. Medical devices to assist with coughing help patients maintain clear airways, avoiding mucous plugs and avoiding the need for tracheostomy tubes.
Monitoring for scoliosis is also important, since weakness of the trunk muscles can lead to deviations in spinal alignment, with resultant compromise of respiratory function. Many patients with congenital myopathies may eventually require surgical treatment of scoliosis.
The different forms have different mutations and inheritance patterns. See the detailed OMIM descriptions for details (given above).
At DeathMlg
None as systemic causes; mainly hereditary
Onset in childhood
Inflammatory myopathies – dermatomyositis, polymyositis (rarely)
Infectious myopathies
Endocrine and metabolic disorders – hypokalemia, hypocalcemia, hypercalcemia
Onset in adulthood
Inflammatory myopathies – polymyositis, dermatomyositis, inclusion body myositis, viral (HIV)
Infectious myopathies
Endocrine myopathies – thyroid, parathyroid, adrenal, pituitary disorders
Toxic myopathies – alcohol, corticosteroids, narcotics, colchicines, chloroquine
Critical illness myopathy
Metabolic myopathies
Paraneoplastic myopathy
Although there is no cure for NM, it is possible, and common for many people live healthy active lives even with moderate to severe cases. Research continues to seek ways to ameliorate debilitating symptoms and lengthen the life-span in quality ways for those affected. Some people have seen mild improvements in secretion handling, energy level, and physical functioning with supplemental L-tyrosine, an amino acid that is available through health centers. Some symptoms may worsen as the patient ages. Muscle loss increases with age naturally, but it is even more significant with nemaline myopathy.
The prognosis for individuals with Pompe disease varies according to the onset and severity of symptoms. Without treatment the disease is particularly lethal in infants and young children.
Myozyme (alglucosidase alfa) is a recombinant form of the human enzyme acid alpha-glucosidase, and is also currently being used to replace the missing enzyme. In a study which included the largest cohort of patients with Pompe disease treated with enzyme replacement therapy (ERT) to date findings showed that Myozyme treatment clearly prolongs ventilator-free survival and overall survival in patients with infantile-onset Pompe disease as compared to an untreated historical control population. Furthermore, the study demonstrated that initiation of ERT prior to 6 months of age, which could be facilitated by newborn screening, shows great promise to reduce the mortality and disability associated with this devastating disorder. Taiwan and several states in the United States have started the newborn screening and results of such regimen in early diagnosis and early initiation of the therapy have dramatically improved the outcome of the disease; many of these babies have reached the normal motor developmental milestones.
Another factor affecting the treatment response is generation of antibodies against the infused enzyme, which is particularly severe in Pompe infants who have complete deficiency of the acid alpha-glucosidase. Immune tolerance therapy to eliminate these antibodies has improved the treatment outcome.
A Late Onset Treatment Study (LOTS) was published in 2010. The study was undertaken to evaluate the safety and efficacy of aglucosidase alfa in juvenile and adult patients with Pompe disease. LOTS was a randomized, double-blind, placebo-controlled study that enrolled 90 patients at eight primary sites in the United States and Europe. Participants received either aglucosidase alfa or a placebo every other week for 18 months. The average age of study participants was 44 years. The primary efficacy endpoints of the study sought to determine the effect of Myozyme on functional endurance as measured by the six-minute walk test and to determine the effect of aglucosidase alfa on pulmonary function as measured by percent predicted forced vital capacity.
The results showed that, at 78 weeks, patients treated with aglucosidase alfa increased their distance walked in six minutes by an average of approximately 25 meters as compared with the placebo group which declined by 3 meters (P=0.03). The placebo group did not show any improvement from baseline. The average baseline distance walked in six minutes in both groups was approximately 325 meters.
Percent predicted forced vital capacity in the group of patients treated with aglucosidase alfa increased by 1.2 percent at 78 weeks. In contrast, it declined by approximately 2.2 percent in the placebo group (P=0.006).
There are exceptions, but levels of alpha-glucosidase determines the type of GSD II an individual may have. More alpha glucosidase present in the individuals muscles means symptoms occur later in life and progress more slowly. GSD II is broadly divided into two onset forms based on the age symptoms occur.
Infantile-onset form is usually diagnosed at 4–8 months; muscles appear normal but are limp and weak preventing them from lifting their head or rolling over. As the disease progresses heart muscles thicken and progressively fail. Without treatment death usually occurs due to heart failure and respiratory weakness.
Late or later onset form occurs later than one to two years and progresses more slowly than Infantile-onset form. One of the first symptoms is a progressive decrease in muscle strength starting with the legs and moving to smaller muscles in the trunk and arms, such as the diaphragm and other muscles required for breathing. Respiratory failure is the most common cause of death. Enlargement of the heart muscles and rhythm disturbances are not significant features but do occur in some cases.
The onset of this disease can begin even before birth but is more commonly in childhood or later into adult life. The progression is slow, with symptoms of weakness and walking difficulties sometimes not presenting until middle age. Early symptoms include Gower's sign ("climbing" up the thighs with the hands when rising from the floor) and tiptoe-walking caused by the beginning of contractures.
Bethlem myopathy affects about 1 in 200,000 people. Contractures of the fingers are a typical symptom of Bethlem myopathy but not of the related Ullrich's myopathy (which does include contractures of arms and legs, as does Bethlem myopathy). Serum creatine kinase is elevated in Bethlem myopathy, as there is ongoing muscle cell death. Patients with Bethlem myopathy may expect a normal life span and continued mobility into adulthood. There is currently no cure for this disorder, but the contractures of the legs can be alleviated with heel-cord surgery followed by bracing and regular physical therapy. Repeated surgeries to lengthen the heel cords may be needed as the child grows to adulthood.
DSMA1 is usually fatal in early childhood. The patient, normally a child, suffers a progressive degradation of the respiratory system until respiratory failure. There is no consensus on the life expectancy in DSMA1 despite a number of studies being conducted. A small number of patients survive past two years of age but they lack signs of diaphragmatic paralysis or their breathing is dependent on a ventilation system.
DSMA1 was identified and classified as a sub-group of spinal muscular atrophies (SMA) in 1974. Currently, various classifications include DSMA1 among general spinal muscular atrophies or distal hereditary motor neuropathies, though the latter has been argued to be more correct.
It is not uncommon for drugs to damage muscle fibers. Particular families of drugs are known to induce myopathies on the molecular level, thus altering organelle function such as the mitochondria. Use of multiple drugs from these families in conjunction with one another can increase the risk of developing a myopathy. Many of the drugs associated with inducing myopathies in patients are found in rheumatology practice.
Incidence can vary greatly from type-to-type, and from country-to-country.
In Germany, one study reported an incidence of 1.28 per 100,000.
A study in Italy reported an incidence of 0.56 per 100,000.
A study in Norway reported an incidence of 3.9 per 100,000 using the years from 1978 to 1999, with a lower rate in earlier decades.
There is currently no cure for the disease but treatments to help the symptoms are available.
Bethlem myopathy is an autosomal dominant myopathy, classified as a congenital form of muscular dystrophy, that is caused by a mutation in one of the three genes coding for type VI collagen. These include COL6A1, COL6A2, and COL6A3.
Distal spinal muscular atrophy type 2 (DSMA2), also known as Jerash type distal hereditary motor neuropathy (HMN-J) — is a very rare childhood-onset genetic disorder characterised by progressive muscle wasting affecting lower and subsequently upper limbs. The disorder has been described in Arab inhabitants of Jerash region in Jordan as well as in a Chinese family.
The condition is linked to a genetic mutation in the "SIGMAR1" gene on chromosome 19 (locus 19p13.3) and is likely inherited in an autosomal recessive manner.
Limb girdle syndrome is a term to describe several distinct medical conditions including polymyositis, myopathy associated with endocrine disease, metabolic myopathy, drug-induced myopathy and limb-girdle muscular dystrophy.
Limb girdle syndrome is weakness located and concentrated around the proximal limb muscles. There are many causes, manifestations and treatments.