Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The cause of IPF is unknown but certain environmental factors and exposures have been shown to increase the risk of getting IPF. Cigarette smoking is the best recognized and most accepted risk factor for IPF, and increases the risk of IPF by about twofold. Other environmental and occupation exposures such as exposure to metal dust, wood dust, coal dust, silica, stone dust, biologic dusts coming from hay dust or mold spores or other agricultural products, and occupations related to farming/livestock have also been shown to increase the risk for IPF. There is some evidence that viral infections may be associated with idiopathic pulmonary fibrosis and other fibrotic lung diseases.
IPF has been recognized in several breeds of both dogs and cats, and has been best characterized in West Highland White Terriers. Veterinary patients with the condition share many of the same clinical signs as their human counterparts, including progressive exercise intolerance, increased respiratory rate, and eventual respiratory distress.
Prognosis is generally poor.
ILD may be classified according to the cause. One method of classification is as follows:
1. Inhaled substances
- Inorganic
- Silicosis
- Asbestosis
- Berylliosis
- printing workers (eg. carbon bblack, ink mist)
- Organic
- Hypersensitivity pneumonitis
2. Drug-induced
- Antibiotics
- Chemotherapeutic drugs
- Antiarrhythmic agents
3. Connective tissue and Autoimmune diseases
- Rheumatoid arthritis
- Systemic lupus erythematosus
- Systemic sclerosis
- Polymyositis
- Dermatomyositis
4. Infection
- Atypical pneumonia
- Pneumocystis pneumonia (PCP)
- Tuberculosis
- "Chlamydia" trachomatis
- Respiratory Syncytial Virus
5. Idiopathic
- Sarcoidosis
- Idiopathic pulmonary fibrosis
- Hamman-Rich syndrome
- Antisynthetase syndrome
6. Malignancy
- Lymphangitic carcinomatosis
7. Predominantly in children
- Diffuse developmental disorders
- Growth abnormalities deficient alveolarisation
- Infant conditions of undefined cause
- ILD related to alveolar surfactant region
Pulmonary fibrosis may be a secondary effect of other diseases. Most of these are classified as interstitial lung diseases. Examples include autoimmune disorders, viral infections and bacterial infection like tuberculosis which may cause fibrotic changes in both lungs upper or lower lobes and other microscopic injuries to the lung. However, pulmonary fibrosis can also appear without any known cause. In this case, it is termed "idiopathic". Most idiopathic cases are diagnosed as "idiopathic pulmonary fibrosis". This is a diagnosis of exclusion of a characteristic set of histologic/pathologic features known as usual interstitial pneumonia (UIP). In either case, there is a growing body of evidence which points to a genetic predisposition in a subset of patients. For example, a mutation in surfactant protein C (SP-C) has been found to exist in some families with a history of pulmonary fibrosis.
Diseases and conditions that may cause pulmonary fibrosis as a secondary effect include:
- Inhalation of environmental and occupational pollutants, such as metals in asbestosis, silicosis and exposure to certain gases. Coal miners, ship workers and sand blasters among others are at higher risk.
- Hypersensitivity pneumonitis, most often resulting from inhaling dust contaminated with bacterial, fungal, or animal products.
- Cigarette smoking can increase the risk or make the illness worse.
- Some typical connective tissue diseases such as rheumatoid arthritis, SLE and scleroderma
- Other diseases that involve connective tissue, such as sarcoidosis and granulomatosis with polyangiitis.
- Infections
- Certain medications, e.g. amiodarone, bleomycin (pingyangmycin), busulfan, methotrexate, apomorphine, and nitrofurantoin
- Radiation therapy to the chest
Regardless of cause, UIP is relentlessly progressive, usually leading to respiratory failure and death without a lung transplant. Some patients do well for a prolonged period of time, but then deteriorate rapidly because of a superimposed acute illness (so-called "accelerated UIP"). The outlook for long-term survival is poor. In most studies, the median survival is 3 to 4 years. Patients with UIP in the setting of rheumatoid arthritis have a slightly better prognosis than UIP without a known cause (IPF).
Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of lung diseases affecting the interstitium (the tissue and space around the air sacs of the lungs). It concerns alveolar epithelium, pulmonary capillary endothelium, basement membrane, perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Ordinarily, the body generates just the right amount of tissue to repair damage. But in interstitial lung disease, the repair process goes awry and the tissue around the air sacs (alveoli) becomes scarred and thickened. This makes it more difficult for oxygen to pass into the bloodstream. The term ILD is used to distinguish these diseases from obstructive airways diseases.
In children, several unique forms of ILD exist which are specific for the young age groups. The acronym chILD is used for this group of diseases and is derived from the English name, Children’s Interstitial Lung Diseases – chILD.
Prolonged ILD may result in pulmonary fibrosis, but this is not always the case. Idiopathic pulmonary fibrosis is interstitial lung disease for which no obvious cause can be identified (idiopathic), and is associated with typical findings both radiographic (basal and pleural based fibrosis with honeycombing) and pathologic (temporally and spatially heterogeneous fibrosis, histopathologic honeycombing and fibroblastic foci).
In 2013 interstitial lung disease affected 595,000 people globally. This resulted in 471,000 deaths.
PAP patients, families, and caregivers are encouraged to join the NIH Rare Lung Diseases Consortium Contact Registry. This is a privacy protected site that provides up-to-date information for individuals interested in the latest scientific news, trials, and treatments related to rare lung diseases.
The prevalence of pulmonary interstitial emphysema widely varies with the population studied. In a 1987 study 3% of infants admitted to the neonatal intensive care unit (NICU) developed pulmonary interstitial emphysema.
Five million people worldwide are affected by pulmonary fibrosis. A wide range of incidence and prevalence rates have been reported for pulmonary fibrosis. The rates below are per 100,000 persons, and the ranges reflect narrow and broad inclusion criteria, respectively.
Based on these rates, pulmonary fibrosis prevalence in the United States could range from more than 29,000 to almost 132,000, based on the population in 2000 that was 18 years or older. The actual numbers may be significantly higher due to misdiagnosis. Typically, patients are in their forties and fifties when diagnosed while the incidence of idiopathic pulmonary fibrosis increases dramatically after the age of fifty. However, loss of pulmonary function is commonly ascribed to old age, heart disease or to more common lung diseases.
The disease is more common in males and in tobacco smokers.
In a recent epidemiologic study from Japan, Autoimmune PAP has an incidence and prevalence higher than previously reported and is not strongly linked to smoking, occupational exposure, or other illnesses.
Endogenous lipoid pneumonia and non-specific interstitial pneumonitis has been seen prior to the development of PAP in a child.
Pregnancy has been reported to exacerbate LAM in some cases. However, the risk has not been rigorously studied. In a survey of 318 patients who indicated that they had had at least one pregnancy, 163 responded to a second survey focusing on lung collapse. A total of 38 patients reported a pneumothorax with pregnancy, consistent with an incidence of pneumothorax in pregnancy of at least 10% (38 of 318). In one third of patients, the pneumothorax during pregnancy led to the LAM diagnosis. Pneumothoraces were almost twice as frequent on the right as on the left, and four women presented with bilateral spontaneous pneumothorax. Most pneumothoraces took place during the second and third trimesters. This study and others suggest that pregnancy is associated with pleural complications in LAM patients. Few women with a known LAM diagnosis choose to become pregnant and patients in whom LAM is diagnosed during pregnancy rarely have baseline pulmonary function tests available, complicating resolution of this question.
Studies reflecting international frequency demonstrated that 2-3% of all infants in NICUs develop pulmonary interstitial emphysema. When limiting the population studied to premature infants, this frequency increases to 20-30%, with the highest frequencies occurring in infants weighing fewer than 1000 g.
Sixty percent of people with acute interstitial pneumonitis will die in the first six months of illness. The median survival is 1½ months.
However, most people who have one episode do not have a second. People who survive often recover lung function completely.
Usual interstitial pneumonia (UIP) is a form of lung disease characterized by progressive scarring of both lungs. The scarring (fibrosis) involves the supporting framework (interstitium) of the lung. UIP is thus classified as a form of interstitial lung disease. The term "usual" refers to the fact that UIP is the most common form of interstitial fibrosis. "Pneumonia" indicates "lung abnormality", which includes fibrosis and inflammation. A term previously used for UIP in the British literature is cryptogenic fibrosing alveolitis, a term that has fallen out of favor since the basic underlying pathology is now thought to be fibrosis, not inflammation.
LAM is almost completely restricted to women. While lung cysts consistent with LAM are reported in some men with tuberous sclerosis, very few of these men develop symptoms. The prevalence of LAM is estimated using data from registries and patient groups and is between 3.4-7.8/million women. The number of new cases each year is between 0.23-0.31/million women/year in the US, UK and Switzerland. The variation between countries and between adjacent states in the US, suggest that a significant number of women with LAM remain either undiagnosed or their symptoms are attributed to other diseases. Adult women with tuberous sclerosis are more likely to develop LAM than women without tuberous sclerosis. Cohorts of patients with tuberous sclerosis have been screened for LAM using CT scanning. In a retrospective study of adults with tuberous sclerosis, CT demonstrated lung cysts in 42% of 95 women and 13% of 91 men. In general, lung cysts were larger and more numerous in women than in men. In a further retrospective study of women with TSC who underwent CT scanning to detect LAM, 25% of those in their 20s had lung cysts whereas 80% of women in their 40s were affected, suggesting that the development of LAM is age dependent at least in tuberous sclerosis-related LAM. Although the prevalence of tuberous sclerosis at 1 in 6000 births is much greater than that of LAM, most pulmonary clinics see more cases of sporadic than tuberous sclerosis-LAM: probably due to a combination of low levels of screening for LAM in tuberous sclerosis and in many, the absence of symptoms.
Female sex and tuberous sclerosis are the only known risk factors. Although use of supplemental estrogen is not associated with development of LAM, one study suggested that use of estrogen-containing contraceptive pills was associated with earlier onset.
It occurs in more than 30% of women with tuberous sclerosis complex (TSC-LAM), a heritable syndrome that is associated with seizures, cognitive impairment and benign tumors in multiple tissues. Most LAM patients who present for medical evaluation have the sporadic form of the disease (S-LAM), however, which is not associated with other manifestations of tuberous sclerosis complex.
Mild cystic changes consistent with LAM have been described in 10–15% of men with TSC, but symptomatic LAM in males is rare. Sporadic LAM occurs exclusively in women, with one published exception to date. Both TSC-LAM and S-LAM are associated with mutations in tuberous sclerosis genes.
Acute interstitial pneumonitis occurs most frequently among people older than forty years old. It affects men and women equally. There are no known risk factors; in particular, smoking is not associated with increased risk.
Sources of such lipids could be either exogenous or endogenous.
Exogenous: from outside the body. For example, inhaled nose drops with an oil base, or accidental inhalation of cosmetic oil. Amiodarone is an anti-arrythmic known to cause this condition. Oil pulling has also been shown to be a cause. At risk populations include the elderly, developmentally delayed or persons with gastroesophageal reflux. Switching to water-soluble alternatives may be helpful in some situations.
Endogenous: from the body itself, for example, when an airway is obstructed, it is often the case that distal to the obstruction, lipid-laden macrophages (foamy macrophages) and giant cells fill the lumen of the disconnected airspace.
Unfortunately for non-healthcare professionals, healthcare professionals can use many different words for pulmonary toxicity and still understand each other completely. Yet, for laypersons, this can lead to some difficulties while searching for information about pulmonary toxicity (or about any other side effect). Here are some words that are rather similar to each other in meaning for healthcare professionals. Side effect = adverse event (AE) = adverse drug reaction (ADR) = adverse reaction = toxicity. Pulmonary = lung. Pulmonary toxicity = pulmonary injury = lung injury = lung toxicity. And instead of pulmonary toxicity (a general term), the specific name of the specific side effect in question can be used, e.g. pneumonitis or radiation pneumonitis. Any combination is also possible, of course.
Flock worker's lung is caused by exposure to small pieces of flock, usually nylon, created during the flocking process and inhaled. Exposure to rotary-cut flock particulates is the main risk factor; whether or not other types of flock cause this pulmonary fibrosis is not yet determined. Other types of flock include rayon, polypropylene, and polyethylene. Workers exposed to nylon, polypropylene, polyethylene, and rayon flocking debris have developed flock worker's lung. Exposure to higher concentrations of respirable flock particles is associated with more severe disease.
Whether or not smoking affects the progression or incidence of flock worker's lung is a topic of ongoing research as of 2015. Research in rats has shown that nylon flocking is a causative agent.
Non-specific interstitial pneumonia (NSIP) is a form of idiopathic interstitial pneumonia.
Idiopathic interstitial pneumonia (IIP), or noninfectious pneumonia are a class of diffuse lung diseases. These diseases typically affect the pulmonary interstitium, although some also have a component affecting the airways (for instance, Cryptogenic organizing pneumonitis). There are seven recognized distinct subtypes of IIP.
Endogenous lipoid pneumonia and non-specific interstitial pneumonitis has been seen prior to the development of pulmonary alveolar proteinosis in a child.
It has been suggested that idiopathic nonspecific interstitial pneumonia has an autoimmune mechanism, and is a possible complication of undifferentiated connective tissue disease.
The following are precautionary measures that can be taken to avoid the spread of bagassosis:
1. Dust control-prevention /suppression of dust such as wet process, enclosed apparatus, exhaust ventilation etc. should be used
2. Personal protection- masks/ respirators
3. Medical control- initial medical examination & periodical checkups of workers
4. Bagasse control- keep moisture content above 20% and spray bagasse with 2% propionic acid
Flock worker's lung can be prevented with engineering controls that protect workers from inhaling flock. Engineering controls to prevent inhalation of flock can include using guillotine cutters rather than rotary cutters, and ensuring that blades are sharp, since dull blades shear off more respirable particles. Flocking plants have also implemented medical surveillance programs for workers to diagnose cases at an earlier stage. Another technique for preventing flock worker's lung is cleaning the workplace with alternatives to compressed air in order to avoid resuspending particulates in the air.