Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The cause of isolated missing teeth remains unclear, but the condition is believed to be associated with genetic or environmental factors during dental development. Missing teeth have been reported in association with increased maternal age, low birth weight, multiple births and rubella virus infection during embryonic life.
There is a possible correlation between tooth agenesis and innervation. A relationship was also postulated between abnormalities of the brainstem and the presence of agenesis.
Hypodontia is often familial, and can also be associated with genetic disorders such as ectodermal dysplasia or Down syndrome. Hypodontia can also be seen in people with cleft lip and palate.
Among the possible causes are mentioned genetic, hormonal, environmental and infectious.
Cause due to hormonal defects: idiopathic hypoparathyroidism and pseudohypoparathyroidism. Exists the possibility that this defect depends on a moniliasis (candidiasis, "candida endocrinopathy syndrome").
Environmental causes involving exposure to PCBs (ex.dioxin), radiation, anticancer chemotherapeutic agents, allergy and toxic epidermal necrolysis after drug.
Infectious causes of hypodontia: rubella, candida.
The Journal of the American Dental Association published preliminary data suggesting a statistical association between hypodontia of the permanent teeth and epithelial ovarian cancer (EOC). The study shows that women with EOC are 8.1 times more likely to have hypodontia than are women without EOC. The suggestion therefore is that hypodontia can serve as a "marker" for potential risk of EOC in women.
Also the increased frequency of hypodontia in twins and low birth weight in twins with hypodontia suggests that environmental factors during perinatal are responsible hypodontia.
Females are affected more than males, and the condition occurs in permanent (adult) teeth more than deciduous (baby teeth or milk teeth).
The cause of talon cusp is unknown. The anomaly can occur due to genetic and environmental factors but the onset can be spontaneous. Prevention is difficult because the occurrence happens during the development of teeth.
Talon cusp affects men and women equally, however the majority of reported cases are of the male gender. Individuals of Asian, Arabic, Native American and Inuit descent are affected more commonly. Talon cusp is also highly observed in patients with orofacial digital II syndrome and Rubinstein Taybi syndrome. Other anomalies that occur with talon cusp can include peg laterals, supernumerary teeth, dens envaginatus, agenesis and impaction. A person belonging to one of these particular demographics or one who has any of these deformities or syndromes may have a higher risk of having a talon cusp.
Genetic causes also involve the genes MSX1 and PAX9.
Genetic associations for selective tooth agenesis ("STHAG") include:
Future studies will look further into the relationship of talon cusp and Rubinstein-Taybi syndrome and other oral-facial-digital syndromes. A former study showed a direct correlation in which 45 affected patients with Rubinstein-Taybi syndrome, 92% of these patients had talon cusp. Other researchers are attempting to trace talon cusp to ancestors and comparing dentition to modern humans. Another study done in 2007 examined the dentition of 301 Native American Indian skeletons for the presence or absence of talon cusp. The results showed five skeletons (2 percent) in the population had the trait.
In 2011, only 21 cases of talon cusp have been reported and are in literature. It appears that as of 2014 and 2015, additional research continues in hopes of finding the cause and mechanism of talon cusp. With the majority of cases of talon cusp being unreported, it remains difficult to conduct tests, come up with conclusions, conduct surgery and perform research with small numbers.
There are many potential factors involved.
- Congenital hypopituitarism
- Ectodermal dysplasia
- Down syndrome
- Ionizing radiation to the jaws during tooth development (odontogenesis)
- Chemotherapy during tooth development
- Marshall syndrome
- Rieger syndrome
- Focal dermal hypoplasia
- Silver-Russell syndrome
- Williams syndrome
- Gorlin-Chaudhry-Moss syndrome
- Coffin–Siris syndrome
- Salamon syndrome
- Cleft lip and palate
Others include trichorhinopharyngeal, odontotrichomelic, neuroectodermal and dermo-odontodysplasia syndromes.
The cause of germination is still unknown. However, there are a few possible factors contributing to germination:
- Vitamin deficiency
- Hormonal irregularities
- Infection or inflammation of areas near to the developing tooth bud
- Drug induced
- Genetic predisposition
- Radiotherapy that caused damage to the developing tooth germ
Acalvaria usually occurs in less than 1 of every 100,000 births. By way of epidemiological data, it is thought that females are more prone to have this defect. Currently, acalvaria is not thought to have much of a risk of recurrence.
Prosthetic replacement of missing teeth is possible using dental implant technology or dentures. This treatment can be successful in giving patients with anodontia a more aesthetically pleasing appearance. The use of an implant prosthesis in the lower jaw could be recommended for younger patients as it is shown to significantly improve the craniofacial growth, social development and self-image. The study associated with this evidence worked with individuals who had ectodermal dysplasia of varying age groups of up to 11, 11 to 18 and more than 18 years. It was noted that the risk of implant failure was significantly higher in patients younger than 18 years, but there is significant reason to use this methodology of treatment in those older. Overall the use of an implant-prosthesis has a considerable functional, aesthetic and psychological advantage when compared to a conventional denture, in the patients.
Genetic counseling for VWS involves discussion of disease transmission in the autosomal dominant manner and possibilities for penetrance and expression in offspring. Autosomal dominance means affected parents have a 50% chance of passing on their mutated "IRF6" allele to a their child. Furthermore, if a cleft patient has lip pits, he or she has a ten times greater risk of having a child with cleft lip with or without cleft palate than a cleft patient who does not have lip pits. Types of clefting between parents and affected children are significantly associated; however, different types of clefts may occur horizontally and vertically within the same pedigree. In cases where clefting is the only symptom, a complete family history must be taken to ensure the patient does not have non-syndromic clefting.
Most of the time, natal teeth are not related to a medical condition. However, sometimes they may be associated with:
- Ellis–van Creveld syndrome
- Hallermann–Streiff syndrome
- Pierre Robin syndrome
- Sotos syndrome
Usually babies with this malformation do not survive past birth. However, there have been cases of survival. As of 2004, there were only two reported living cases. Of these two, one was severely cognitively impaired and physically disabled. The status of the other was unreported. If the fetus progresses to full term, there is the risk that it will have head trauma from the pressure applied to the head while being delivered. A few other cases of acalvaria have been reported, which did not progress to birth. In addition to the lack skull cap, there were brain malformations present in each case, and all of the pregnancies were terminated either electively or the fetuses were spontaneously aborted.
In dentistry, anodontia, also called anodontia vera, is a rare genetic disorder characterized by the congenital absence of all primary or permanent teeth. It is associated with the group of skin and nerve syndromes called the ectodermal dysplasias. Anodontia is usually part of a syndrome and seldom occurs as an isolated entity.
Congenital absence of permanent teeth can present as hypodontia, usually missing 1 or 2 permanent teeth, or oligodontia that is the congenital absence of 6 or more teeth. Congenital absence of all wisdom teeth, or third molars, is relatively common. Anodontia is the congenital absence of teeth and can occur in some or all teeth (partial anodontia or hypodontia), involve two dentitions or only teeth of the permanent dentition (Dorland's 1998). Approximately 1% of the population suffers from oligodontia. Many denominations are attributed to this anomaly: partial anodontia, hypodontia, oligodontia, the congenital absence, anodontia, bilateral aplasia. Anodontia being the term used in controlled vocabulary Medical Subject Headings (MeSH) from MEDLINE which was developed by the United States National Library of Medicine. The congenital absence of at least one permanent tooth is the most common dental anomaly and may contribute to masticator dysfunction, speech impairment, aesthetic problems, and malocclusion (Shapiro and Farrington 1983). Absence of lateral incisors represents a major stereotype. Individuals with this condition are perceived as socially most aggressive compared with people without anodontia (Shaw 1981).
Before root canal treatment or extraction are carried out, the clinician should have thorough knowledge about the root canal morphology to avoid complications.
Natal teeth are teeth that are present above the gumline (have already erupted) at birth, and neonatal teeth are teeth that emerge through the gingiva during the first month of life (the neonatal period).
The incidence of neonatal teeth varies considerably, between 1:700 and 1:30,000 depending on the type of study; the highest prevalence is found in the only study that relies on personal examination of patients.
Lip pits may be surgically removed either for aesthetic reasons or discomfort due to inflammation caused by bacterial infections or chronic saliva excretion, though spontaneous shrinkage of the lip pits has occurred in some rare cases. Chronic inflammation has also been reported to cause squamous-cell carcinoma. It is essential to completely remove the entire lip pit canal, as mucoid cysts can develop if mucous glands are not removed. A possible side effect of removing the lip pits is a loose lip muscle. Other conditions associated with VWS, including CL, CP, congenital heart defects, etc. are surgically corrected or otherwise treated as they would be if they were non-syndromic.
Incidence of Crouzon syndrome is currently estimated to occur in 1.6 out of every 100,000 people. There is a greater frequency in families with a history of the disorder, but that doesn't mean that everyone in the family is affected (as referred to above).
There is no known cure for this syndrome. Patients usually need ophthalmic surgery and may also need dental surgery
Genetic counseling and screening of the mother's relatives is recommended.
This syndrome is due to mutations in the Nance Horan gene (NHS) which is located on the short arm of the X chromosome (Xp22.13).
In disease states, maxillary prognathism is associated with Cornelia de Lange syndrome; however, so-called false maxillary prognathism, or more accurately, retrognathism, where there is a lack of growth of the mandible, is by far a more common condition.
Prognathism, if not extremely severe, can be treated in growing patients with orthodontic functional or orthopaedic appliances. In adult patients this condition can be corrected by means of a combined surgical/orthodontic treatment, where most of the time a mandibular advancement is performed. The same can be said for mandibular prognathism.
Although the etiology is unclear and it is speculated to be multifactorial. Contributing factors may include the following:
1. children born preterm and those with poor general health or systemic conditions in their first 3 years may develop MIH.
2. environmental changes
3. exposure to dioxine by prolonged breast-feeding could lead to an increase in the risk of MIH
4. respiratory diseases and oxygen shortage of the ameloblasts
5. oxygen shortage combined with low birth weight
Not all alveolar prognathism is anomalous, and significant differences can be observed among different ethnic groups.
Harmful habits such as thumb sucking or tongue thrusting can result in or exaggerate an alveolar prognathism, causing teeth to misalign. Functional appliances can be used in growing children to help modify bad habits and neuro-muscular function, with the aim of correcting this condition.
Alveolar prognathism can also easily be corrected with fixed orthodontic therapy. However, relapse is quite common, unless the cause is removed or a long-term retention is used.
Another abnormal condition is hypodontia, in which there are fewer than the usual number of teeth.
Hyperdontia is seen in a number of disorders, including Gardner's syndrome and cleidocranial dysostosis, where multiple supernumerary teeth are seen that are usually impacted.
Literature states that very few crossbites tend to self-correct which often justify the treatment approach of correcting these bites as early as possible. Only 0–9% of crossbites self-correct. Lindner et al. reported that in a 50% of crossbites were corrected in 76 four year old children.
Although many perinatal and prenatal risk factors for ONH have been suggested, the predominant, enduring, most frequent risk factors are young maternal age and primiparity (the affected child being the first child born to the mother). Increased frequency of delivery by caesarean section and fetal/neonatal complications, preterm labor, gestational vaginal bleeding, low maternal weight gain, and weight loss during pregnancy are also associated with ONH.