Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Originally found in neuromyelitis optica, this autoantibody has been associated with other conditions. Its current spectrum is as following:
- Seropositive Devic's disease, according to the diagnostic criteria described above
- Limited forms of Devic's disease, such as single or recurrent events of longitudinally extensive myelitis, and bilateral simultaneous or recurrent optic neuritis
- Asian optic-spinal MS - this variant can present brain lesions like MS.
- Longitudinally extensive myelitis or optic neuritis associated with systemic autoimmune disease
- Optic neuritis or myelitis associated with lesions in specific brain areas such as the hypothalamus, periventricular nucleus, and brainstem
- Some cases of tumefactive multiple sclerosis
Though for the most of the cases these diseases are still idiopathic, recent researchs have found the causes for some of them, making them not idiopathic anymore. There are currently two identified auto-antibodies and a genetic variant. The autoantibodies are anti-AQP4 and anti-MOG so far and the genetic variant is a mutation in the gene NR1H3.
The role of prolonged cortical myelination in human evolution has been implicated as a contributing factor in some cases of demyelinating disease. Unlike other primates, humans exhibit a unique pattern of postpubertal myelination, which may contribute to the development of psychiatric disorders and neurodegenerative diseases that present in early adulthood and beyond. The extended period of cortical myelination in humans may allow greater opportunity for disruption in myelination, resulting in the onset of demyelinating disease. Furthermore, it has been noted that humans have significantly greater prefrontal white matter volume than other primate species, which implies greater myelin density. Increased myelin density in humans as a result of a prolonged myelination may therefore structure risk for myelin degeneration and dysfunction. Evolutionary considerations for the role of prolonged cortical myelination as a risk factor for demyelinating disease are particularly pertinent given that genetics and autoimmune deficiency hypotheses fail to explain many cases of demyelinating disease. As has been argued, diseases such as multiple sclerosis cannot be accounted for by autoimmune deficiency alone, but strongly imply the influence of flawed developmental processes in disease pathogenesis. Therefore, the role of the human-specific prolonged period of cortical myelination is an important evolutionary consideration in the pathogenesis of demyelinating disease.
Incidence of demyelinating diseases vary from disorder to disorder. Some conditions, such as Tabes dorsalis appear predominantly in males and begins in mid-life. Optic neuritis on the other hand, occurs preferentially in females typically between the ages of 30 and 35. Other conditions such as multiple sclerosis vary in prevalence depending on the country and population. This condition can appear in children as well as adults.
Normally, some measure of improvement appears in a few weeks, but residual signs and disability may persist, sometimes severely.
The disease can be monophasic, i.e. a single episode with permanent remission. However, at least 85% of patients have a relapsing form of the disease with repeated attacks of transverse myelitis and/or optic neuritis. In patients with the monophasic form, the transverse myelitis and optic neuritis occur simultaneously or within days of each other. On the other hand, patients with the relapsing form are more likely to have weeks or months between the initial attacks, and to have better motor recovery after the initial transverse myelitis event. Relapses usually occur early, with about 55% of patients having a relapse in the first year and 90% in the first five years.
It is possible that the relapsing form is related to the antiAQP4+ seropositive status and the monophasic form related to its absence Unlike multiple sclerosis, Devic's disease rarely has a secondary progressive phase in which patients have increasing neurologic decline between attacks without remission. Instead, disabilities arise from the acute attacks.
Approximately 20% of patients with monophasic Devic's disease have permanent visual loss, and 30% have permanent paralysis in one or both legs. Among patients with relapsing Devic's disease, 50% have paralysis or blindness within five years. In some patients (33% in one study), transverse myelitis in the cervical spinal cord resulted in respiratory failure and subsequent death. However, the spectrum of Devic's disease has widened due to improved diagnostic criteria, and the options for treatment have improved; as a result, researchers believe these estimates will be lowered.
The prevalence and incidence of Devic's disease has not been established, partly because the disease is underrecognized and often confused with MS. Devic's disease is more common in women than men, with women comprising over two-thirds of patients and more than 80% of those with the relapsing form of the disease.
A retrospective study found that prevalence of NMOsd was 1.5% inside a random sample of neurological patients, with a MS:NMOsd ratio of 42.7. Among 13 NMOsd patients, 77% had long spinal cord lesions, 38% had severe optic neuritis and 23% had brain or brainstem lesions. Only 56% had clinically definite NMO at follow-up.
According to the Walton Centre in England, "NMO seems to be present across the world unlike MS, which has a higher incidence in temperate climates and white races. Africans and Asians especially in Far East may have a higher risk of NMO, although the exact incidence of this disease is unknown, making specific conclusions difficult". Although many people who have Devic's disease were initially misdiagnosed with MS, 35% of African Americans are often misdiagnosed with MS when they really have NMO.
Devic's disease is more common in Asians than Caucasians. In fact, Asian optic-spinal MS (which constitutes 30% of the cases of MS in Japan) has been suggested to be identical to Devic's disease (differences between optic-spinal and classic MS in Japanese patients). In the indigenous populations of tropical and subtropical regions, MS is rare, but when it appears, it often takes the form of optic-spinal MS.
The majority of Devic's disease patients have no affected relatives, and it is generally regarded as a nonfamilial condition.
Approximately 2 million people in the world suffer from multiple sclerosis Tumefactive multiple sclerosis cases make up 1 to 2 of every 1000 multiple sclerosis cases. This means that only around 2000 people in the world suffer of tumefactive MS. Of those cases, there is a higher percentage of females affected than males. The median age of onset is 37 years.
As in general MS, there are differences for gender, ethnicity and geographic location. Based on epidemiological studies, there are about 3 times more female MS patients than male patients, indicating a possibility of an increased risk due to hormones. Among different ethnic groups, MS is the most common among Caucasians and seems to have a greater incidence at latitudes above 40° as compared to at the equator. While these associations have been made, it is still unclear how they result in an increased risk of MS onset.
The pathology of the tumefactive demyelinating lesion (TDL) is heterogeneous. In acute phase, the plaques of lesions were characterized by massive demyelination with relatively axonal preservation associated with reactive astrocytosis and infiltration of macrophages. In plaques of chronic lesions, demyelinated lesions with relative axonal preservation and sharply defined margins were major findings. And myelin-laden macrophages accumulate at the edges of plaques and stay inactive
There are several conditions can produce tumefactive lesions. This is known because in some special cases the etiology can be identified. For example, there are some cases of NMO, misidentified as MS and treated with interferon-beta by mistake. Some of these patients developed tumefactive lesions. Anyway, it is important to have into account that NMO itself can also produce them
Some other cases have been found related to viral infection, some others related to NMOSD, others could be paraneoplastic. Also some cases could be related to hormonal treatments
Other possible cause are immunomodulatory combinations. In particular, it has been found that switching from standard MS therapies to fingolimod can trigger tumefactive lesions in some MS patients
While standard multiple sclerosis process has an autoimmune response after the breach of the blood-brain barrier, in tumefactive MS things do not process in the same way, and demyelinating lesions do not always show antibody damage. Subjects with tumefactive multiple sclerosis display elevated levels of choline (Cho)/creatine ratio and increased lactate which is associated with demylinating diseases. Cases also display oligoclonal bands in the cerebrospinal fluid.
The disease is heterogeneous and the lesions do not always comply with the requirements for multiple sclerosis diagnosis (dissemination in time and space). In these cases it is only possible to speak about tumefactive demyelination (TD).
In general, it is accepted that the two main causes of pseudo-tumoral lesions are Marburg multiple sclerosis and acute disseminated encephalomyelitis (ADEM). Tumefactive demyelination of the spinal cord is rare but it has been reported
Damage is not confined to the demyelinating area. Wallerian degeneration outside the lesions has been reported.
Marburg variant of MS is an acute fulminant demyelinating process which in most cases progresses inexorably to death within 1–2 years. However, there are some reports of Marburg MS reaching stability by three years.
Marburg acute multiple sclerosis, also known as Marburg multiple sclerosis or acute fulminant multiple sclerosis, is considered one of the multiple sclerosis borderline diseases, which is a collection of diseases classified by some as MS variants and by others as different diseases. Other diseases in this group are neuromyelitis optica (NMO), Balo concentric sclerosis, and Schilder's disease. The graver course is one form of malignant multiple sclerosis, with patients reaching a significant level of disability in less than five years from their first symptoms, often in a matter of months.
Sometimes Marburg MS is considered a synonym for tumefactive MS, but not for all authors.
The prognosis of this disease is very variable and can take three different courses: a monophasic, not remitting;
remitting;
and finally, progressive, with increase in deficits.
PML is most common in people with HIV1 infection; prior to the advent of effective antiretroviral therapy, as many as 5% of people with AIDS eventually developed PML. It is unclear why PML occurs more frequently in AIDS than in other immunosuppressive conditions; some research suggests the effects of HIV on brain tissue, or on JCV itself, make JCV more likely to become active in the brain and increase its damaging inflammatory effects.
PML can occur in people on chronic immunosuppressive therapy like corticosteroids, for organ transplant, in people with cancer (such as Hodgkin’s disease, leukemia, or lymphoma) and individuals with autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, psoriasis, sarcoidosis, and systemic lupus erythematosus with or without biological therapies that depress the immune response and allow JC virus reactivation. These therapies include efalizumab, belatacept, rituximab, natalizumab, infliximab, cytotoxic chemotherapy, corticosteroids, and various transplant drugs such as tacrolimus.
Natalizumab (Tysabri) was approved in 2004 by the FDA for multiple sclerosis (MS). It was subsequently withdrawn from the market by its manufacturer after it was linked with three cases of PML. All 3 initial cases were taking natalizumab in combination with interferon beta-1a. After a safety review the drug was returned to the market in 2006 as a monotherapy for MS under a special prescription program. As of May 2011, over 130 cases of PML had been reported in MS patients, all in patients who had taken natalizumab for more than a year. While none of them had taken the drug in combination with other disease-modifying treatments, previous use of MS treatments increases the risk of PML between 3 and 4-fold. The estimated prevalence of PML in MS is 1.5 cases per thousand natalizumab users. Around 20% of MS patients with PML die, and most of the rest are very disabled.
A person with MS developed PML and died during a 4-year course of dimethyl-fumarate.
Given that some conditions as MS show cortical damage together with the WM damage, there has been interest if this can appear as a secondary damage of the WM. It seems that some researchers claim so.
Diffuse myelinoclastic sclerosis, sometimes referred to as Schilder's disease, is a very infrequent neurodegenerative disease that presents clinically as pseudotumoural demyelinating lesions, that make its diagnosis difficult. It usually begins in childhood, affecting children between 5 and 14 years old, but cases in adults are possible.
This disease is considered one of the borderline forms of multiple sclerosis because some authors consider them different diseases and others MS variants. Other diseases in this group are neuromyelitis optica (NMO), Balo concentric sclerosis and Marburg multiple sclerosis.
As in multiple sclerosis, another demyelinating condition, it is not possible to predict with certainty how CIDP will affect patients over time. The pattern of relapses and remissions varies greatly with each patient. A period of relapse can be very disturbing, but many patients make significant recoveries.
If diagnosed early, initiation of early treatment to prevent loss of nerve axons is recommended. However, many individuals are left with residual numbness, weakness, tremors, fatigue and other symptoms which can lead to long-term morbidity and diminished quality of life.
It is important to build a good relationship with doctors, both primary care and specialist. Because of the rarity of the illness, many doctors will not have encountered it before. Each case of CIDP is different, and relapses, if they occur, may bring new symptoms and problems. Because of the variability in severity and progression of the disease, doctors will not be able to give a definite prognosis. A period of experimentation with different treatment regimens is likely to be necessary in order to discover the most appropriate treatment regimen for a given patient.
In 1982 Lewis et al reported a group of patients with a chronic asymmetrical sensorimotor neuropathy mostly affecting the arms with multifocal involvement of peripheral nerves. Also in 1982 Dyck "et al" reported a response to prednisolone to a condition they referred to as chronic inflammatory demyelinating polyradiculoneuropathy. Parry and Clarke in 1988 described a neuropathy which was later found to be associated with IgM autoantibodies directed against GM1 gangliosides. This latter condition was later termed multifocal motor neuropathy This distinction is important because multifocal motor neuropathy responds to intravenous globulin alone while chronic inflammatory demyelinating polyneuropathy responds to intravenous globulin, steroids and plasma exchanges. It has been suggested that multifocal motor neuropathy is distinct from chronic inflammatory demyelinating polyneuropathy and that Lewis-Summer syndrome is a distinct variant type of chronic inflammatory demyelinating polyneuropathy.
The Lewis-Summer form of this condition is considered a rare disease with only 50 cases reported up to 2004. A total of 90 cases had been reported by 2009
The theory of autoimmune attack claims that a person with neuroimmunologic disorders have genetic predisposition to auto-immune disorder, and the environmental factors would trigger the disease. The specific genetics in myelitis is not completely understood. It is believed that the immune system response could be to viral, bacterial, fungal, or parasitic infection; however, it is not known why the immune system attacks itself. Especially, for immune system to cause inflammatory response anywhere in the central nervous system, the cells from immune system must pass through the blood brain barrier. In the case of myelitis, not only is the immune system dysfunctional, but the dysfunction also crosses this protective blood brain barrier to affect the spinal cord.
Demyelination is produced by injection of brain extracts, CNS proteins (such as myelin basic protein), or peptides from such protein emulsified in an adjuvant such as complete Freund's adjuvant. The presence of the adjuvant allows the generation of inflammatory responses to the protein/peptides. In many protocols, mice are coinjected with pertussis toxin to break down the blood-brain barrier and allow immune cells access to the CNS tissue. This immunisation leads to multiple small disseminated lesions of demyelination (as well as micro-necroses) in the brain and spinal cord and the onset of clinical symptoms.
Although sharing some features, mostly demyelination, this model, first introduced in 1930s, differs from human MS in several ways. EAE either kills animals or leaves them with permanent disabilities; animals with EAE also suffer severe nerve inflammation, and the time course of EAE is entirely different from MS, being the main antigen (MBP) in charge.
CNS demyelinating autoimmune diseases are autoimmune diseases which primarily affect the central nervous system.
Examples include:
- Diffuse cerebral sclerosis of Schilder
- Acute disseminated encephalomyelitis
- Acute hemorrhagic leukoencephalitis
- Multiple sclerosis (though the cause is unknown, it is sure that immune system is involved)
- Transverse myelitis
- Neuromyelitis optica
Conditions associated with myelitis include:
- Acute disseminated encephalomyelitis: autoimmune demyelination of the brain causing severe neurological signs and symptoms
- Multiple sclerosis: demyelination of the brain and spinal cord
- Neuromyelitis optica or Devic's disease: immune attack on optic nerve and spinal cord
- Sjögren's syndrome: destruction of the exocrine system of the body
- Systemic lupus erythematosus: a systemic autoimmune disease featuring a wide variety of neurological signs and symptoms
- Sarcoidosis: chronic inflammatory cells form as nodules in multiple organs
- Atopy: an immune disorder of children manifesting as eczema or other allergic conditions. It can include atopic myelitis, which causes weakness.
A preceding antigenic challenge can be identified in approximately two-thirds of people. Viral infections thought to induce ADEM include influenza virus, enterovirus, measles, mumps, rubella, varicella zoster, Epstein Barr virus, cytomegalovirus, herpes simplex virus, hepatitis A, and coxsackievirus; while the bacterial infections include Mycoplasma pneumoniae, Borrelia burgdorferi, Leptospira, and beta-hemolytic Streptococci. The only vaccine proven to induce ADEM is the Semple form of the rabies vaccine, but hepatitis B, pertussis, diphtheria, measles, mumps, rubella, pneumococcus, varicella, influenza, Japanese encephalitis, and polio vaccines have all been implicated. The majority of the studies that correlate vaccination with ADEM onset use small samples or case studies. Large scale epidemiological studies (e.g., of MMR vaccine or smallpox vaccine) do not show increased risk of ADEM following vaccination. In rare cases, ADEM seems to follow from organ transplantation. An upper bound for the risk of ADEM from measles vaccination, if it exists, can be estimated to be 10 per million, which is far lower than the risk of developing ADEM from an actual measles infection, which is about 1 per 1,000 cases. For a rubella infection, the risk is 1 per 5,000 cases. Some early vaccines, later shown to have been contaminated with host animal CNS tissue, had ADEM incident rates as high as 1 in 600.
A hereditary CNS demyelinating disease is a demyelinating central nervous system disease that is primarily due to an inherited genetic condition. (This is in contrast to autoimmune demyelinating conditions, such as multiple sclerosis, or conditions such as central pontine myelinolysis that are associated with acute acquired insult.)
Examples include:
- Alexander disease
- Canavan disease
- Krabbe disease
- leukoencephalopathy with vanishing white matter
- megalencephalic leukoencephalopathy with subcortical cysts
- metachromatic leukodystrophy
- X-linked adrenoleukodystrophy
Full recovery is seen in 50 to 70% of cases, ranging to 70 to 90% recovery with some minor residual disability (typically assessed using measures such as mRS or EDSS), average time to recover is one to six months. The mortality rate may be as high as 5%. Poorer outcomes are associated with unresponsiveness to steroid therapy, unusually severe neurological symptoms, or sudden onset. Children tend to have more favorable outcomes than adults, and cases presenting without fevers tend to have poorer outcomes. The latter effect may be due to either protective effects of fever, or that diagnosis and treatment is sought more rapidly when fever is present.
ADEM can progress to MS. It will be considered MS if some lesions appear in different times and brain areas
Granulomatous meningoencephalitis (GME) is an inflammatory disease of the central nervous system (CNS) of dogs and, rarely, cats. It is a form of meningoencephalitis. GME is likely second only to encephalitis caused by "canine distemper virus" as the most common cause of inflammatory disease of the canine CNS. The disease is more common in female toy dogs of young and middle age. It has a rapid onset. The lesions of GME exist mainly in the white matter of the cerebrum, brainstem, cerebellum, and spinal cord. The cause is only known to be noninfectious and is considered at this time to be idiopathic. Because lesions resemble those seen in allergic meningoencephalitis, GME is thought to have an immune-mediated cause, but it is also thought that the disease may be based on an abnormal response to an infectious agent. One study searched for viral DNA from "canine herpesvirus", "canine adenovirus", and "canine parvovirus" in brain tissue from dogs with GME, necrotizing meningoencephalitis, and necrotizing leukoencephalitis (see below for the latter two conditions), but failed to find any.