Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Sjögren–Larsson syndrome (SLS) is an autosomal recessive form of ichthyosis apparent at birth.
Sjögren–Larsson syndrome is a rare autosomal, recessive, neurocutaneous disease. This disease can be identified by a triad of medical disorders. The first is ichthyosis, which is a buildup of skin to form a scale-like covering that causes dry skin and other problems. The second identifier is spastic paraplegia which is characterized by leg spasms. The final identifier is intellectual delay.
The gene of SLS is found on chromosome 17. In order for a child to receive SLS both parents must be carriers of the SLS gene. If they are carriers their child has a ¼ chance of getting the disease. In 1957 Sjogren and Larsson proposed that the Swedes with the disease all descended from a common ancestor 600 years ago. Today only 30–40 persons in Sweden have this disease.
An extremely rare disease of which only a few isolated cases are known.
Worth syndrome is caused by a mutation in the LRP5 gene, located on human chromosome 11q13.4. The disorder is inherited in an autosomal dominant fashion. This indicates that the defective gene responsible for a disorder is located on an autosome (chromosome 11 is an autosome), and only one copy of the defective gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
Congenital Ichthyosiform Erythroderma (CIE), also known as Nonbullous congenital ichthyosiform erythroderma is a rare type the ichthyosis family of skin diseases which occurs in 1 in 200,000 to 300,000 births.
HID syndrome is also known as ichthyosis hystrix, Rheydt type after the German city of Rheydt near Düsseldorf where it was first discovered. Symptoms are bilateral hearing loss and spiky hyperkeratotic masses which cover the whole body though the palms and soles are less badly affected. It can be differentiated from KID syndrome which also has symptoms of deafness and ichthyosis by the different distribution of hyperkeratosis. It is an autosomal dominant condition caused by a mutation to the GJB2 gene (the same gene affected by KID syndrome).
CHILD syndrome is a rare disorder with only 60 recorded cases worldwide thus far in literature.
Keratitis–ichthyosis–deafness syndrome (also known as "Erythrokeratodermia progressiva Burns," "Ichthyosiform erythroderma, corneal involvement, and deafness," and "KID syndrome,") presents at birth/infancy and is characterized by pregressive corneal opacification, either mild generalized hyperkeratosis or discrete erythematous plaques, and neurosensory deafness.
It is caused by a mutation in connexin 26.
Worth syndrome, also known as benign form of Worth hyperostosis corticalis generalisata with torus platinus, autosomal dominant osteosclerosis, autosomal dominant endosteal hyperostosis or Worth disease, is a rare autosomal dominant congenital disorder that is caused by a mutation in the LRP5 gene. It is characterized by increased bone density and benign bony structures on the palate.
CHILD syndrome is not fatal unless there are problems with the internal organs. The most common causes of early death in people with the syndrome are cardiovascular malformations. However, central nervous system, skeletal, kidney, lung, and other visceral defects also contribute significantly.
It is associated with a deficiency of the enzyme "fatty aldehyde dehydrogenase". At least 11 distinct mutations have been identified.
Usually, a common form of treatment for the condition is a type of hand cream which moisturises the hard skin. However, currently the condition is incurable.
Congenital hereditary corneal dystrophy (CHED) is a form of corneal dystrophy which presents at birth.
CHED has two types:
- type I or the autosomal dominant form.
- type II or the autosomal recessive form is linked to mutations in SLC4A11 gene
X-linked recessive inheritance is a mode of inheritance in which a mutation in a gene on the X chromosome causes the phenotype to be expressed in males (who are necessarily hemizygous for the gene mutation because they have one X and one Y chromosome) and in females who are homozygous for the gene mutation, see zygosity.
X-linked inheritance means that the gene causing the trait or the disorder is located on the X chromosome. Females have two X chromosomes, while males have one X and one Y chromosome. Carrier females who have only one copy of the mutation do not usually express the phenotype, although differences in X chromosome inactivation can lead to varying degrees of clinical expression in carrier females since some cells will express one X allele and some will express the other. The current estimate of sequenced X-linked genes is 499 and the total including vaguely defined traits is 983.
Some scholars have suggested discontinuing the terms dominant and recessive when referring to X-linked inheritance due to the multiple mechanisms that can result in the expression of X-linked traits in females, which include cell autonomous expression, skewed X-inactivation, clonal expansion, and somatic mosaicism.
Autosomal dominant porencephaly type I is rare and its prevalence and incidence are unknown. It affects males and females equally.
Palmoplantar keratodermas are a heterogeneous group of disorders characterized by abnormal thickening of the palms and soles.
Autosomal recessive and dominant, X-linked, and acquired forms have all been described.
Hyperimmunoglobulinemia E syndrome (HIES), of which the autosomal dominant form is called Job's syndrome or Buckley syndrome, is a heterogeneous group of immune disorders. Job's is also very rare at about 300 cases currently in the literature.
CIE has symptoms very similar to Lamellar ichthyosis (LI) but milder and is considered by many scientists to be a variant of that disease, so both diseases are grouped under the title autosomal recessive congenital ichthyosis (ARCI).
The baby is often born in a collodion membrane, a shiny, wax outer layer on the skin and usually with ectropion, having the lower eyelid turned outwards. When the membrane is shed the skin is red with a generalized white scale. Palms, soles and areas on the joints are often affected with hyperkeratosis, a thickening of the layer of dead skin cells on the surface of the skin. In classical CIE (unlike LI) there is little eclabion (eversion of the lips), ectropion and alopecia (hair loss).
Many people with ACRI don't fit neatly into the definition of LI or CIE but have characteristics of both diseases. The definitions of CIE and LI describe the extremes of the range of ACRI.
It is characterized by recurrent "cold" staphylococcal infections, unusual eczema-like skin rashes, severe lung infections that result in pneumatoceles (balloon-like lesions that may be filled with air or pus or scar tissue) and very high concentrations of the serum antibody IgE. Inheritance can be autosomal dominant or autosomal recessive. Many patients with autosomal dominant STAT3 hyper-IgE syndrome have characteristic facial and dental abnormalities, fail to lose their primary teeth, and have two sets of teeth simultaneously.
Frequencies of this disease are the greatest in Norway with a few Finnish cases have also having been noted to date. Some cases have been found in other ethnicities such as in people of Indian or Japanese descent as well as a north Italian family. These cases are scattered and there are potentially more under reported cases as this disease is often under diagnosed for other cutaneous diseases. It is most prevalent in a defined region in the middle of Norway and Sweden with a heterozygote carrier frequency of 1 in 50.
Trichothiodystrophy (TTD) is an autosomal recessive inherited disorder characterised by brittle hair and intellectual impairment. The word breaks down into "tricho" – "hair", "thio" – "sulphur", and "dystrophy" – "wasting away" or literally "bad nourishment". TTD is associated with a range of symptoms connected with organs of the ectoderm and neuroectoderm. TTD may be subclassified into four syndromes: Approximately half of all patients with trichothiodystrophy have photosensitivity, which divides the classification into syndromes with or without photosensitivity; BIDS and PBIDS, and IBIDS and PIBIDS. Modern covering usage is TTD-P (photosensitive), and TTD.
The most common X-linked recessive disorders are:
- Red-green color blindness, a very common trait in humans and frequently used to explain X-linked disorders. Between seven and ten percent of men and 0.49% to 1% of women are affected. Its commonness may be explained by its relatively benign nature. It is also known as daltonism.
- Hemophilia A, a blood clotting disorder caused by a mutation of the Factor VIII gene and leading to a deficiency of Factor VIII. It was once thought to be the "royal disease" found in the descendants of Queen Victoria. This is now known to have been Hemophilia B (see below).
- Hemophilia B, also known as Christmas Disease, a blood clotting disorder caused by a mutation of the Factor IX gene and leading to a deficiency of Factor IX. It is rarer than hemophilia A. As noted above, it was common among the descendants of Queen Victoria.
- Duchenne muscular dystrophy, which is associated with mutations in the dystrophin gene. It is characterized by rapid progression of muscle degeneration, eventually leading to loss of skeletal muscle control, respiratory failure, and death.
- Becker's muscular dystrophy, a milder form of Duchenne, which causes slowly progressive muscle weakness of the legs and pelvis.
- X-linked ichthyosis, a form of ichthyosis caused by a hereditary deficiency of the steroid sulfatase (STS) enzyme. It is fairly rare, affecting one in 2,000 to one in 6,000 males.
- X-linked agammaglobulinemia (XLA), which affects the body's ability to fight infection. XLA patients do not generate mature B cells. B cells are part of the immune system and normally manufacture antibodies (also called immunoglobulins) which defends the body from infections (the humoral response). Patients with untreated XLA are prone to develop serious and even fatal infections.
- Glucose-6-phosphate dehydrogenase deficiency, which causes nonimmune hemolytic anemia in response to a number of causes, most commonly infection or exposure to certain medications, chemicals, or foods. Commonly known as "favism", as it can be triggered by chemicals existing naturally in broad (or fava) beans.
Hystrix-like ichthyosis–deafness syndrome (also known as "HID syndrome") is a cutaneous condition characterized by a keratoderma.
The condition is caused by genetic mutations in one of four genes that encode keratin proteins specific to the epithelial tissues affected in the two forms of the disorder. PC1 is caused by mutations in keratin 6A (protein name K6A; gene name "KRT6A") or keratin 16 (protein K16; gene "KRT16"). The PC2 form is due to mutations in the genes encoding keratin 6B (protein name K6B; gene name "KRT6B") or keratin 17 (protein K17; gene "KRT17"). Three of the genes causing PC were identified in 1995 with the fourth gene following in 1998.
Ramos-Arroyo syndrome is marked by corneal anesthesia, absence of the peripapillary choriocapillaris and retinal pigment epithelium, bilateral sensorineural hearing loss, unusual facial appearance, persistent ductus arteriosus, Hirschsprung disease, and moderate intellectual disability. It appears to be a distinct autosomal dominant syndrome with variable expressivity.
As of 2008 this syndrome has only been reported in five individuals within three generations of the same family; two young children, their mother, their uncle and their maternal grandmother. This most recent generation to be diagnosed with Ramos-Arroyo syndrome supports the hypothesis that this disease is a distinct autosomal
dominant disorder. If this syndrome could be identified in other families it may help to discriminate the gene responsible.