Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Shunting refers to blood that bypasses the pulmonary circulation, meaning that the blood does not receive oxygen from the alveoli. In general, a shunt may be within the heart or lungs, and cannot be corrected by administering oxygen alone. Shunting may occur in normal states:
- Anatomic shunting, occurring via the bronchial circulation, which provides blood to the tissues of the lung. Shunting also occurs by the smallest cardiac veins, which empty directly into the left ventricle.
- Physiological shunts, occur due to the effect of gravity. The highest concentration of blood in the pulmonary circulation occurs in the bases of the pulmonary tree compared to the highest pressure of gas in the apexes of the lungs. Alveoli may not be ventilated in shallow breathing.
Shunting may also occur in disease states:
- Acute lung injury and adult respiratory distress syndrome, which may cause alveolar collapse. This will increase the amount of physiological shunting, and unlike many forms of shunting, can be managed by administering 100% Oxygen.
- Pathological shunts such as patent ductus arteriosus, patent foramen ovale, and atrial septal defects or ventricular septal defects. These states are when blood from the right side of the heart moves straight to the left side, without first passing through the lungs. This is known as a right-to-left shunt, which is often congenital in origin.
In conditions where the proportion of oxygen in the air is low, or when the partial pressure of oxygen has decreased, less oxygen is present in the alveoli of the lungs. The alveolar oxygen is transferred to hemoglobin, a carrier protein inside red blood cells, with an efficiency that decreases with the partial pressure of oxygen in the air.
- Altitude. The external partial pressure of oxygen decreases with altitude, for example in areas of high altitude or when flying. This decrease results in decreased carriage of oxygen by haemoglobin. This is particularly seen as a cause of cerebral hypoxia and mountain sickness in climbers of Mount Everest and other peaks of extreme altitude. For example, at the peak of Mount Everest, the partial pressure of oxygen is just 43 mmHg, whereas at sea level the partial pressure is 150 mmHg. For this reason, cabin pressure in aircraft is maintained at 5,000 to 6,000 feet (1500 to 1800 m).
- Diving. Hypoxia in diving can result from sudden surfacing. The partial pressures of gases increases when diving, increases by one ATM every ten metres. This means that a partial pressure of oxygen sufficient to maintain good carriage by haemoglobin is possible at depth, even if it is insufficient at the surface. A diver that remains underwater will slowly consume their oxygen, and when surfacing, the partial pressure of oxygen may be insufficient (shallow water blackout). This may manifest at depth as deep water blackout.
- Suffocation. Decreased concentration of oxygen in inspired air caused by reduced replacement of oxygen in the breathing mix.
- Anaesthetics. Low partial pressure of oxygen in the lungs when switching from inhaled anesthesia to atmospheric air, due to the Fink effect, or diffusion hypoxia.
- Air depleted of oxygen has also proven fatal. In the past, anesthesia machines have malfunctioned, delivering low-oxygen gas mixtures to patients. Additionally, oxygen in a confined space can be consumed if carbon dioxide scrubbers are used without sufficient attention to supplementing the oxygen which has been consumed.
VALI is most common in patients receiving mechanical ventilation for acute lung injury or acute respiratory distress syndrome (ALI/ARDS).
Possible reasons for predisposition to VALI include:
- An injured lung may be at risk for further injury
- Cyclic atelectasis is particularly common in an injured lung
24 percent of all patients mechanically ventilated will develop VALI for reasons other than ALI or ARDS. The incidence is probably higher among patients who already have ALI/ARDS, but estimates vary widely. The variable estimates reflect the difficulty in distinguishing VALI from progressive ALI/ARDS.
Sleep apnea can affect people regardless of sex, race, or age. However, risk factors include:
- being male
- excessive weight
- an age above 40
- large neck size (greater than 16–17 inches)
- enlarged tonsils or tongue
- small jaw bone
- gastroesophageal reflux
- allergies
- sinus problems
- a family history of sleep apnea
- deviated septum
Alcohol, sedatives and tranquilizers may also promote sleep apnea by relaxing throat muscles. Smokers have sleep apnea at three times the rate of people who have never smoked.
Central sleep apnea is more often associated with any of the following risk factors:
- being male
- an age above 65
- having heart disorders such as atrial fibrillation or atrial septal defects such as PFO
- stroke
High blood pressure is very common in people with sleep apnea.
The Wisconsin Sleep Cohort Study estimated in 1993 that roughly one in every 15 Americans was affected by at least moderate sleep apnea. It also estimated that in middle-age as many as nine percent of women and 24 percent of men were affected, undiagnosed and untreated.
The costs of untreated sleep apnea reach further than just health issues. It is estimated that in the U.S. the average untreated sleep apnea patient's annual health care costs $1,336 more than an individual without sleep apnea. This may cause $3.4 billion/year in additional medical costs. Whether medical cost savings occur with treatment of sleep apnea remains to be determined.
Therapeutic hypothermia has been attempted to improve results post brain ischemia . This procedure was suggested to be beneficial based on its effects post cardiac arrest. Evidence supporting the use of therapeutic hypothermia after brain ischemia, however, is limited.
A closely related disease to brain ischemia is brain hypoxia. Brain hypoxia is the condition in which there is a decrease in the oxygen supply to the brain even in the presence of adequate blood flow. If hypoxia lasts for long periods of time, coma, seizures, and even brain death may occur. Symptoms of brain hypoxia are similar to ischemia and include inattentiveness, poor judgment, memory loss, and a decrease in motor coordination. Potential causes of brain hypoxia are suffocation, carbon monoxide poisoning, severe anemia, and use of drugs such as cocaine and other amphetamines. Other causes associated with brain hypoxia include drowning, strangling, choking, cardiac arrest, head trauma, and complications during general anesthesia. Treatment strategies for brain hypoxia vary depending on the original cause of injury, primary and/or secondary.
Brain ischemia has been linked to a variety of diseases or abnormalities. Individuals with sickle cell anemia, compressed blood vessels, ventricular tachycardia, plaque buildup in the arteries, blood clots, extremely low blood pressure as a result of heart attack, and congenital heart defects have a higher predisposition to brain ischemia in comparison their healthy counterparts.
Sickle cell anemia may cause brain ischemia associated with the irregularly shaped blood cells. Sickle shaped blood cells clot more easily than normal blood cells, impeding blood flow to the brain.
Compression of blood vessels may also lead to brain ischemia, by blocking the arteries that carry oxygen to the brain. Tumors are one cause of blood vessel compression.
Ventricular tachycardia represents a series of irregular heartbeats that may cause the heart to completely shut down resulting in cessation of oxygen flow. Further, irregular heartbeats may result in formation of blood clots, thus leading to oxygen deprivation to all organs.
Blockage of arteries due to plaque buildup may also result in ischemia. Even a small amount of plaque build up can result in the narrowing of passageways, causing that area to become more prone to blood clots. Large blood clots can also cause ischemia by blocking blood flow.
A heart attack can also cause brain ischemia due to the correlation that exists between heart attack and low blood pressure. Extremely low blood pressure usually represents the inadequate oxygenation of tissues. Untreated heart attacks may slow blood flow enough that blood may start to clot and prevent the flow of blood to the brain or other major organs. Extremely low blood pressure can also result from drug overdose and reactions to drugs. Therefore, brain ischemia can result from events other than heart attacks.
Congenital heart defects may also cause brain ischemia due to the lack of appropriate artery formation and connection. People with congenital heart defects may also be prone to blood clots.
Other events that may result in brain ischemia include cardiorespiratory arrest, stroke, and severe irreversible brain damage.
Recently, Moyamoya disease has also been identified as a potential cause for brain ischemia. Moyamoya disease is an extremely rare cerebrovascular condition that limits blood circulation to the brain, consequently leading to oxygen deprivation.