Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Hypothyroidism is diagnosed by noting a high TSH associated with a subnormal T4 concentration. Subclinical hypothyroidism (SCH) is present when the TSH is high but the T4 level is in the normal range but usually low normal. SCH is the commonest form of hypothyroidism in pregnancy and is usually due to progressive thyroid destruction due to autoimmune thyroid disease.
Several studies, mostly retrospective, have shown an association between overt hypothyroidism and adverse fetal and obstetric outcomes (e.g. Glinoer 1991). Maternal complications such as miscarriages, anaemia in pregnancy, pre-eclampsia, abruptio placenta and postpartum haemorrhage can occur in pregnant women with overt hypothyroidism. Also, the offspring of these mothers can have complications such as premature birth, low birth weight and increased neonatal respiratory distress. Similar complications have been reported in mothers with subclinical hypothyroidism. A three-fold risk of placental abruption and a two-fold risk of pre-term delivery were reported in mothers with subclinical hypothyroidism. Another study showed a higher prevalence of subclinical hypothyroidism in women with pre-term delivery (before 32 weeks) compared to matched controls delivering at term. An association with adverse obstetrics outcome has also been demonstrated in pregnant women with thyroid autoimmunity independent of thyroid function. Treatment of hypothyroidism reduces the risks of these adverse obstetric and fetal outcomes; a retrospective study of 150 pregnancies showed that treatment of hypothyroidism led to reduced rates of abortion and premature delivery. Also, a prospective intervention trial study showed that treatment of euthyroid antibody positive pregnant women led to fewer rates of miscarriage than non treated controls.
It has long been known that cretinism (i.e. gross reduction in IQ) occurs in areas of severe iodine deficiency due to the fact that the mother is unable to make T4 for transport to the fetus particularly in the first trimester. This neurointellectual impairment (on a more modest scale) has now been shown in an iodine sufficient area (USA) where a study showed that the IQ scores of 7-9 year old children, born to mothers with undiagnosed and untreated hypothyroidism in pregnancy, were seven points lower than those of children of matched control women with normal thyroid function in pregnancy. Another study showed that persistent hypothyroxinaemia at 12 weeks gestation was associated with an 8-10 point deficit in mental and motor function scores in infant offspring compared to children of mothers with normal thyroid function. Even maternal thyroid peroxidase antibodies were shown to be associated with impaired intellectual development in the offspring of mothers with normal thyroid function. Interestingly, it has been shown that it is only the maternal FT4 levels that are associated with child IQ and brain morphological outcomes, as opposed to maternal TSH levels.
Neonatal thyroid screening programs from all over the world have revealed that congenital hypothyroidism (CH) occurs with an incidence of 1:3000 to 1:4000. The differences in CH-incidence are more likely due to iodine deficiency thyroid disorders or to the type of screening method than to ethnic affiliation. CH is caused by an absent or defective thyroid gland classified into agenesis (22-42%), ectopy (35-42%) and gland in place defects (24-36%). It is also found to be of increased association with female sex and gestational age >40 weeks.
Cortisol inhibition, and as a result, excess androgen release can lead to a variety of symptoms. Other symptoms come about as a result of increased levels of circulating androgen. Androgen is a steroid hormone, generally associated with development of male sex organs and secondary male sex characteristics The symptoms associated with Cortisone Reductase Deficiency are often linked with Polycystic Ovary Syndrome (PCOS) in females. The symptoms of PCOS include excessive hair growth, oligomenorrhea, amenorrhea, and infertility. In men, cortisone reductase deficiency results in premature pseudopuberty, or sexual development before the age of nine.
Most children born with congenital hypothyroidism and correctly treated with thyroxine grow and develop normally in all respects. Even most of those with athyreosis and undetectable T levels at birth develop with normal intelligence, although as a population academic performance tends to be below that of siblings and mild learning problems occur in some.
Congenital hypothyroidism is the most common preventable cause of intellectual disability. Few treatments in the practice of medicine provide as large a benefit for as small an effort.
The developmental quotient (DQ, as per Gesell Developmental Schedules) of children with hypothyroidism at age 24 months that have received treatment within the first 3 weeks of birth is summarised below:
Hypothyroidism is common in pregnancy with an estimated prevalence of 2-3% and 0.3-0.5% for subclinical and overt hypothyroidism respectively. Endemic iodine deficiency accounts for most hypothyroidism in pregnant women worldwide while chronic autoimmune thyroiditis is the most common cause of hypothyroidism in iodine sufficient parts of the world. The presentation of hypothyroidism in pregnancy is not always classical and may sometimes be difficult to distinguish from the symptoms of normal pregnancy. A high index of suspicion is therefore required especially in women at risk of thyroid disease e.g. women with a personal or family history of thyroid disease, goitre, or co-existing primary autoimmune disorder like type 1 diabetes.
Diagnosis of cortisone reductase deficiency is done through analysis of cortisol to cortisone metabolite levels in blood samples. As of now, there is no treatment for cortisone reductase deficiency. Shots of cortisol are quickly metabolised into cortisone by the dysregulated 11β-HSD1 enzyme; however, symptoms can be treated. Treatment of hyperandroginism can be done through prescription of antiandrogens. They do so by inhibiting the release of gonadotropin and luteinizing hormone, both hormones in the pituitary, responsible for the production of testosterone.
Thyroid dyshormonogenesis (or dyshormogenetic goiter) is a rare condition due to genetic defects in the synthesis of thyroid hormones.
Patients develop hypothyroidism with a goitre.either deficiency of thyroid enzymes or inability to concentrate or ineffective binding
In a study of 1,034 symptomatic adults, Sheehan syndrome was found to be the sixth most frequent etiology of growth hormone deficiency, being responsible for 3.1% of cases (versus 53.9% due to a pituitary tumor).
Screening for hypothyroidism is performed in the newborn period in many countries, generally using TSH. This has led to the early identification of many cases and thus the prevention of developmental delay. It is the most widely used newborn screening test worldwide. While TSH-based screening will identify the most common causes, the addition of T testing is required to pick up the rarer central causes of neonatal hypothyroidism. If T determination is included in the screening done at birth, this will identify cases of congenital hypothyroidism of central origin in 1:16,000 to 1:160,000 children. Considering that these children usually have other pituitary hormone deficiencies, early identification of these cases may prevent complications.
In adults, widespread screening of the general population is a matter of debate. Some organizations (such as the United States Preventive Services Task Force) state that evidence is insufficient to support routine screening, while others (such as the American Thyroid Association) recommend either intermittent testing above a certain age in both sexes or only in women. Targeted screening may be appropriate in a number of situations where hypothyroidism is common: other autoimmune diseases, a strong family history of thyroid disease, those who have received radioiodine or other radiation therapy to the neck, those who have previously undergone thyroid surgery, those with an abnormal thyroid examination, those with psychiatric disorders, people taking amiodarone or lithium, and those with a number of health conditions (such as certain heart and skin conditions). Yearly thyroid function tests are recommended in people with Down syndrome, as they are at higher risk of thyroid disease.
All causes in this category are genetic, and generally very rare. These include mutations to the "SF1" transcription factor, congenital adrenal hypoplasia due to "DAX-1" gene mutations and mutations to the ACTH receptor gene (or related genes, such as in the Triple A or Allgrove syndrome). "DAX-1" mutations may cluster in a syndrome with glycerol kinase deficiency with a number of other symptoms when "DAX-1" is deleted together with a number of other genes.
Hypothyroidism may be prevented in a population by adding iodine to commonly used foods. This public health measure has eliminated endemic childhood hypothyroidism in countries where it was once common. In addition to promoting the consumption of iodine-rich foods such as dairy and fish, many countries with moderate iodine deficiency have implemented universal salt iodization (USI). Encouraged by the World Health Organization, 130 countries now have USI, and 70% of the world's population are receiving iodized salt. In some countries, iodized salt is added to bread. Despite this, iodine deficiency has reappeared in some Western countries as a result of attempts to reduce salt intake.
Pregnant and breastfeeding women, who require 66% more daily iodine requirement than non-pregnant women, may still not be getting enough iodine. The World Health Organization recommends a daily intake of 250 µg for pregnant and breastfeeding women. As many women will not achieve this from dietary sources alone, the American Thyroid Association recommends a 150 µg daily supplement by mouth.
Certain medications can have the unintended side effect of affecting thyroid function. While some medications can lead to significant hypothyroidism or hyperthyroidism and those at risk will need to be carefully monitored, some medications may affect thyroid hormone lab tests without causing any symptoms or clinical changes, and may not require treatment. The following medications have been linked to various forms of thyroid disease:
- Amiodarone (more commonly can lead to hypothyroidism, but can be associated with some types of hyperthyroidism)
- Lithium salts (hypothyroidism)
- Some types of interferon and IL-2 (thyroiditis)
- Glucocorticoids, dopamine agonists, and somatostatin analogs (block TSH, which can lead to hypothyroidism)
Hyperthyroidism is a state in which the body is producing too much thyroid hormone. The main hyperthyroid conditions are:
- Graves' disease
- Toxic thyroid nodule
- Thyroid storm
- Toxic nodular struma (Plummer's disease)
- Hashitoxicosis: "transient" hyperthyroidism that can occur in Hashimoto's thyroiditis
Autoimmune adrenalitis is the most common cause of Addison's disease in the industrialised world. Autoimmune destruction of the adrenal cortex is caused by an immune reaction against the enzyme 21-hydroxylase (a phenomenon first described in 1992). This may be isolated or in the context of autoimmune polyendocrine syndrome (APS type 1 or 2), in which other hormone-producing organs, such as the thyroid and pancreas, may also be affected.
Adrenal destruction is also a feature of adrenoleukodystrophy (ALD), and when the adrenal glands are involved in metastasis (seeding of cancer cells from elsewhere in the body, especially lung), hemorrhage (e.g. in Waterhouse-Friderichsen syndrome or antiphospholipid syndrome), particular infections (tuberculosis, histoplasmosis, coccidioidomycosis), or the deposition of abnormal protein in amyloidosis.
Growth hormone-releasing hormone (GHRH) is another releasing factor secreted by the hypothalamus. GHRH stimulates the pituitary gland to secrete growth hormone (GH), which has various effects on body growth and sexual development. Insufficient GH production may cause poor somatic growth, precocious puberty or gonadotropin deficiency, failure to initiate or complete puberty, and is often associated with rapid weight gain, low T, and low levels of sex hormones.
One particular familial form is associated with sensorineural deafness (Pendred's syndrome).
OMIM includes the following:
Endocrine disorder is more common in women than men, as it is associated with menstrual disorders.
Hypothalamic disease is a disorder presenting primarily in the hypothalamus, which may be caused by damage resulting from malnutrition, including anorexia and bulimia eating disorders, genetic disorders, radiation, surgery, head trauma, lesion, tumour or other physical injury to the hypothalamus. The hypothalamus is the control center for several endocrine functions. Endocrine systems controlled by the hypothalamus are regulated by anti-diuretic hormone (ADH), corticotropin-releasing hormone, gonadotropin-releasing hormone, growth hormone-releasing hormone, oxytocin, all of which are secreted by the hypothalamus. Damage to the hypothalamus may impact any of these hormones and the related endocrine systems. Many of these hypothalamic hormones act on the pituitary gland. Hypothalamic disease therefore affects the functioning of the pituitary and the target organs controlled by the pituitary, including the adrenal glands, ovaries and testes, and the thyroid gland.
Numerous dysfunctions manifest as a result of hypothalamic disease. Damage to the hypothalamus may cause disruptions in body temperature regulation, growth, weight, sodium and water balance, milk production, emotions, and sleep cycles. Hypopituitarism, neurogenic diabetes insipidus, tertiary hypothyroidism, and developmental disorders are examples of precipitating conditions caused by hypothalamic disease.
Hypoprolactinemia can result from autoimmune disease, hypopituitarism, growth hormone deficiency, hypothyroidism, excessive dopamine action in the tuberoinfundibular pathway and/or the anterior pituitary, and ingestion of drugs that activate the D receptor, such as direct D receptor agonists like bromocriptine and pergolide, and indirect D receptor activators like amphetamines (through the induction of dopamine release).
In the developed world it is a rare complication of pregnancy, usually occurring after excessive blood loss. The presence of disseminated intravascular coagulation (i.e., in amniotic fluid embolism or HELLP syndrome) also appears to be a factor in its development.
Typical manifestations of Pickardt–Fahlbusch syndrome are hypothyroidism with reduced TSH values and functional hyperprolactinemia (which is caused by disinhibition of prolactin release). Other endocrine disorders that are usually associated with Pickardt syndrome are suprasellar failures like secondary hypogonadism, reduced levels of growth hormone and, in more severe cases, secondary adrenal insufficiency.
The most common method to manage hypoglycemia and diabetes is with an insulin pump. . However in infants and very young children long acting insulins like Glargine and Levemir are preferred to prevent recurrent hypoglycemia . As soon as parent knows Walcott-Rallison syndrome is the source, treatment or therapy plans need to be drawn up along with frequent check ins to make sure kidney and liver functions are around normal and insulin therapy are working. If needed, the patient can undergo thyroxin therapy in order to maintain proper thyroid stimulating hormone levels. This has only been needed in a few cases were hypothyroidism was present in the patient.
The most rare form of central DI is familial neurogenic diabetes insipidus. This form of DI is due to an inherited mutation of the arginine vasopressin-neurophysin II (AVP-NPII) gene, inherited in an autosomal dominant manner. At one point, only 45 families worldwide were known to possess this genetic trait. It is now more widely recognized, although the precise number of people affected with this form of DI is unknown at the present time.
There is also an X-linked familial form.
Wolfram Syndrome (also called DIDMOAD) is characterised by DI, diabetes mellitus nerve deafness and optic atrophy.
Thyroid dysgenesis or thyroid agenesis is a cause of congenital hypothyroidism where the thyroid is missing, ectopic, or severely underdeveloped.
It should not be confused with iodine deficiency, or with other forms of congenital hypothyroidism, such as thyroid dyshormonogenesis, where the thyroid is present but not functioning correctly.
Congenital hypothyroidism caused by thyroid dysgenesis can be associated with PAX8.
Bone disease is common among the elderly individual, but adolescents can be diagnosed with this disorder as well. There are many bone disorders such as osteoporosis, Paget's disease, hypothyroidism. Although there are many forms of bone disorders, they all have one thing in common; abnormalities of specific organs involved, deficiency in vitamin D or low Calcium in diet, which results in poor bone mineralization.