Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Because hypertelorism is an anatomic condition associated with a heterogeneous group of congenital disorders, it is believed that the underlying mechanism of hypertelorism is also heterogeneous. Theories include too early ossification of the lower wings of the sphenoid, an increased space between the orbita, due to increasing width of the ethmoid sinuses, field defects during the development, a nasal capsule that fails to form, leading to a failure in normal medial orbital migration and also a disturbance in the formation of the cranial base, which can be seen in syndromes like Apert and Crouzon.
As with almost every kind of surgery, the main complications in both treatments of hypertelorism include excessive bleeding, risk of infection and CSF leaks and dural fistulas. Infections and leaks can be prevented by giving perioperative antibiotics and identifying and closing of any dural tears. The risk of significant bleeding can be prevented by meticulous technique and blood loss is compensated by transfusions. Blood loss can also be reduced by giving hypotensive anesthesia. Rarely major eye injuries, including blindness, are seen. Visual disturbances can occur due to the eye muscle imbalance after orbital mobilization. Ptosis and diplopia can also occur postoperatively, but this usually self-corrects. A quite difficult problem to correct postoperatively is canthal drift, which can be managed best by carefully preserving the canthal tendon attachments as much as possible. Despite the extensiveness in these procedures, mortality is rarely seen in operative correction of hypertelorism.
Because the cause of facial clefts still is unclear, it is difficult to say what may prevent children being born with facial clefts. It seems that folic acid contributes to lowering the risk of a child being born with a facial cleft.
There is still some discussion on whether FND is sporadic or genetic. The majority of FND cases are sporadic. Yet, some studies describe families with multiple members with FND. Gene mutations are likely to play an important role in the cause. Unfortunately, the genetic cause for most types of FND remains undetermined.
Blepharophimosis is a congenital condition characterized by a horizontally narrow palpebral fissure. It is also part of a syndrome blepharophimosis, ptosis, and epicanthus inversus syndrome, also called blepharophimosis syndrome, which is a condition where the patient has bilateral ptosis with reduced lid size, vertically and horizontally. The nasal bridge is flat and there is hypoplastic orbital rim. Both the vertical and horizontal palpebral fissures (eyelid opening) are shortened; the eyes are also spaced more widely apart than usual, also known as telecanthus.
Vignes (1889) probably first described this entity, a dysplasia of the eyelids.
The cause of frontorhiny is a mutation in the ALX3 gene. ALX3 is essential for normal facial development. Different mutations can occur in the ALX3 gene, but they all lead to the same effect: severe or complete loss of protein functionality. The ALX3 mutation never occurs in a person without frontorhiny.
Blepharophimosis syndrome is an autosomal dominant characterized by blepharophimosis (horizontal shortening of the palpebral fissures), ptosis (upper eyelid drooping, usually with the characteristics of congenital ptosis), epicanthus inversus (skin folds by the nasal bridge, more prominent lower than upper lid), and telecanthus (widening of the distance between the medial orbital walls). This syndrome is caused by mutations in the FOXL2 gene, either with premature ovarian failure (BPES type I) or without (BPES type II). It may also be associated with lop ears, ectropion, hypoplasia of superior orbital rims, and hypertelorism.
The most common cranial anomaly seen in combination with facial clefts is encephalocele.
SCS is the most common craniosynostosis syndrome and affects 1 in every 25,000 to 50,000 individuals. It occurs in all racial and ethnic groups, and affects males and females equally. If a parent carries a copy of the SCS gene mutation, then there is a 50% chance their child will also carry a copy of the gene mutation, in which case, the child may or may not show signs of SCS. There is also a 50% chance their child will have two working copies of the gene, and would therefore, not have SCS. If both parents carry a single copy of the SCS gene mutation, then there is a 25% chance their child will have two gene mutation copies (so child would develop severe SCS), a 25% chance their child would have two normal copies of the gene (so would be completely normal), and a 50% chance their child would carry one gene mutation copy and 1 normal copy (so child may or may not display SCS). In rare situations, two normal parents can have a child with SCS due to a "de novo" mutation. The exact cause of the "de novo" mutation is unknown, but it doesn't seem to be related to anything that the parents did or didn't do during the pregnancy. SCS due to a "de novo" mutation is so rare that the proportion of past cases is unknown.
Saethre–Chotzen syndrome (SCS), also known as Acrocephalosyndactyly type III is a rare congenital disorder associated with craniosynostosis (premature closure of one or more of the sutures between the bones of the skull). This affects the shape of the head and face, resulting in a cone-shaped head and an asymmetrical face. Individuals with SCS also have droopy eyelids (ptosis), widely spaced eyes (hypertelorism), and minor birth defects of the hands and feet (syndactyly). In addition, individuals with more severe cases of SCS may have mild to moderate mental retardation or learning disabilities. Depending on the level of severity, some individuals with SCS may require some form of medical or surgical intervention. Most individuals with SCS live fairly normal lives, regardless of whether medical treatment is needed or not.
Telecanthus (from the Greek word "tele" (τῆλε) meaning far, and the Latin word canthus, meaning either corner of the eye, where the eyelids meet) refers to increased distance between the medial canthi of the eyes, while the inter-pupillary distance is normal. This is in contrast to hypertelorism, where the inter-pupillary distance is increased.
The distance between the inner corner of the left eye and the inner corner of the right eye, is called intercanthal distance. In most people, the intercanthal distance is equal to the distance between the inner corner and the outer corner of each eye, that is, the width of the eye. The average interpupillary distance is 60–62 millimeters (mm), which corresponds to an intercanthal distance of approximately 30–31 mm. The situation, where intercanthal distance is intensely bigger than the width of the eye, is called telecanthus (tele= Greek τηλε = far, and Greek ακανθα = thorn). This can be an ethnic index or an indication for hypertelorism or hypotelorism, if it is combined with abnormal relation to the interpupillary distance (A D STEAS).
"Traumatic Telecanthus" refers to telcanthus resulting from traumatic injury to the nasal-orbital-ethmoid (NOE) complex. The diagnosis of traumatic telecanthus requires a measurement in excess of those normative values. The pathology can be either unilateral or bilateral, with the former more difficult to measure.
Telecanthus is often associated with many congenital disorders. Congenital disorders such as Down syndrome, fetal alcohol syndrome, Cri du Chat syndrome, Klinefelter syndrome, Turner syndrome, Ehlers-Danlos syndrome, Waardenburg syndrome often present with prominent epicanthal fold and if these folds are nasal (most commonly are) they will cause telecanthus.
Fig of the used terms
Incidence of Crouzon syndrome is currently estimated to occur in 1.6 out of every 100,000 people. There is a greater frequency in families with a history of the disorder, but that doesn't mean that everyone in the family is affected (as referred to above).
To treat the trigonocephaly, expanding the distance between orbits using springs seems to work. It allows enough space for the brain to grow and it creates a normal horizontal axis of the orbits and supraorbital bar. The endoscopic surgery started to become popular since the early 90's, but it has some technical limitations (only strip cranictomy is possible). There have been few attempts to go beyond the limits.
Aesthetic outcomes of metopic surgery have been good. Surgery does not have a perfect outcome because there will most likely be minor irregularities. Sometimes reoperations are needed for the severe cases. Trying to hollow out the temporal, and the hypoterlorism are very hard to correct. The hypotelorism usually stays not corrected and in order to correct the temporal hollowing, a second operation is most likely needed.
Michels syndrome is a syndrome characterised by intellectual disability, craniosynostosis, blepharophimosis, ptosis, epicanthus inversus, highly arched eyebrows, and hypertelorism. And vary in other symptoms such as asymmetry of the skull, eyelid, and anterior chamber anomalies, cleft lip and palate, umbilical anomalies, and growth and cognitive development.
Each child is different and it entirely depends on which sutures are fused and how it is affecting the child as to how it is treated. Some children have severe breathing issues due to shallow mid face and may require a tracheostomy. All should be treated at a specialist centre. Cranio bands are not used in the UK.
Surgery is typically used to prevent the closure of sutures of the skull from damaging the brain's development. Without surgery, blindness and mental retardation are typical outcomes. Craniofacial surgery is a discipline of both plastic surgery and oral and maxillofacial surgery (OMFS) . To move the orbits forward, craniofacial surgeons expose the skull and orbits and reshape the bone. To treat the midface deficiency, craniofacial surgeons can move the lower orbit and midface bones forward. For jaw surgery, either plastic surgeons or OMFS surgeons can perform these operations.
Crouzon patients tend to have multiple sutures involved, most specifically bilateral coronal craniosynostoses, and either open vault surgery or strip craniectomy (if child is under 6 months) can be performed. In the later scenario, a helmet is worn for several months following surgery.
Once treated for the cranial vault symptoms, Crouzon patients generally go on to live a normal lifespan.
Pfeiffer syndrome is a very rare genetic disorder characterized by the premature fusion of certain bones of the skull which affects the shape of the head and face. In addition, the syndrome includes abnormalities of the hands (such as wide and deviated thumbs) and feet (such as wide and deviated big toes). Pfeiffer syndrome affects about 1 in 100,000 births.
Children with Pfeiffer syndrome types 2 and 3 "have a higher risk for neurodevelopmental disorders and a reduced life expectancy" than children with Pfeiffer syndrome type 1, but if treated, favorable outcomes are possible. In severe cases, respiratory and neurological complications often lead to early death.
Craniofrontonasal dysplasia is a very rare genetic condition. As such there is little information and no consensus in the published literature regarding the epidemiological statistics.
The incidence values that were reported ranged from 1:100,000 to 1:120,000.
Opitz G/BBB Syndrome is a rare genetic condition caused by one of two major types of mutations: MID1 mutation on the short (p) arm of the X chromosome or a mutation of the 22q11.2 gene on the 22nd chromosome. Since it is a genetic disease, it is an inherited condition. However, there is an extremely wide variability in how the disease presents itself.
In terms of prevention, several researchers strongly suggest prenatal testing for at-risk pregnancies if a MID1 mutation has been identified in a family member. Doctors can perform a fetal sex test through chromosome analysis and then screen the DNA for any mutations causing the disease. Knowing that a child may be born with Opitz G/BBB syndrome could help physicians prepare for the child’s needs and the family prepare emotionally. Furthermore, genetic counseling for young adults that are affected, are carriers or are at risk of carrying is strongly suggested, as well (Meroni, Opitz G/BBB syndrome, 2012). Current research suggests that the cause is genetic and no known environmental risk factors have been documented. The only education for prevention suggested is genetic testing for at-risk young adults when a mutation is found or suspected in a family member.
The growth retardation dates from the intrauterine period (development in the uterus.) The long-term developmental growth and outcome is not known, but the early childhood development is known, which is said to be moderately delayed. Craniosynostosis is usually rare among the X-Linked Intellectual Disability Syndromes, but when it is present, it affects the metopic structure (forehead).
3C syndrome is very rare, occurring in less than 1 birth per million. Because of consanguinity due to a founder effect, it is much more common in a remote First Nations village in Manitoba, where 1 in 9 people carries the recessive gene.
In teratology, proboscis is a blind-ended, tubelike structure, commonly located in the midface.
Proboscis formation are classified in four general types: holoprosencephalic proboscis, lateral nasal proboscis, supernumerary proboscis, and disruptive proboscis.
- Holoprosencephalic proboscis is found in holoprosencephaly. In cyclopia or ethmocephaly, proboscis is an abnormally formed nose. In cyclopia, a single median eye is associated with arrhinia (absence of the nose) and usually with proboscis formation above the eye. In ethmocephaly, two separate hypoteloric eyes are associated with arrhinia and supraocular proboscis formation. In cebocephaly, no proboscis formation occurs, but a single-nostril nose is present.
- Lateral nasal proboscis (proboscis lateralis) is a tubular proboscis-like structure and represents incomplete formation of one side of the nose; it is found instead of a nostril. The olfactory bulb is usually rudimentary on the involved side. The lacrimal duct (tear duct), nasal bone, nasal cavity, vomer, maxillary sinus, cribriform plate, and ethmoid cells are often missing on the involved side. Ocular hypertelorism may be present. The proboscis lateralis is a rare nasal anomaly.
- Supernumerary proboscis (Accessory proboscis) is found when both nostrils are formed and a proboscis occurs additionally. Accessory proboscis arise from a supernumerary olfactory placode.
- Disruptive proboscis occur if an early embryonic hamartoneoplastic lesion arises in the primitive prosencephalon.
Several studies have reported that life expectancy appears to be normal for people with CCD.
Malpuech facial clefting syndrome, also called Malpuech syndrome or Gypsy type facial clefting syndrome, is a rare congenital syndrome. It is characterized by facial clefting (any type of cleft in the bones and tissues of the face, including a cleft lip and palate), a appendage (a "human tail"), growth deficiency, intellectual and developmental disability, and abnormalities of the renal system (kidneys) and the male genitalia. Abnormalities of the heart, and other skeletal malformations may also be present. The syndrome was initially described by Guilliaume Malpuech and associates in 1983. It is thought to be genetically related to Juberg-Hayward syndrome. Malpuech syndrome has also been considered as part of a spectrum of congenital genetic disorders associated with similar facial, urogenital and skeletal anomalies. Termed "3MC syndrome", this proposed spectrum includes Malpuech, Michels and Mingarelli-Carnevale (OSA) syndromes. Mutations in the "COLLEC11" and "MASP1" genes are believed to be a cause of these syndromes. The incidence of Malpuech syndrome is unknown. The pattern of inheritance is autosomal recessive, which means a defective (mutated) gene associated with the syndrome is located on an autosome, and the syndrome occurs when two copies of this defective gene are inherited.