Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The most common cause of primary hyperparathyroidism is a sporadic, single parathyroid adenoma resulting from a clonal mutation (~97%). Less common are parathyroid hyperplasia (~2.5%), parathyroid carcinoma (malignant tumor), and adenomas in more than one gland (together ~0.5%).
Primary hyperparathyroidism is also a feature of several familial endocrine disorders: Multiple endocrine neoplasia type 1 and type 2A (MEN type 1 and MEN type 2A), and familial hyperparathyroidism.
Genetic associations include:
In all cases, the disease is idiopathic, but is thought to involve inactivation of tumor suppressor genes (Menin gene in MEN1), or involve gain of function mutations (RET proto-oncogene MEN 2a).
Recently, it was demonstrated that liquidators of the Chernobyl power plant are faced with a substantial risk of primary hyperparathyroidism, possibly caused by radioactive strontium isotopes.
Primary hyperparathyroidism can also result from pregnancy. It is apparently very rare, with only about 110 cases have so far been reported in world literature, but this is probably a considerable underestimate of its actual prevalence in pregnant women.
The incidence of primary hyperparathyroidism is approximately 1 per 1,000 people (0.1%), while there are 25-30 new cases per 100,000 people per year in the United States. The prevalence of primary hyperparathyroidism has been estimated to be 3 in 1000 in the general population and as high as 21 in 1000 in postmenopausal women. It is almost exactly three times as common in women as men.
Primary hyperparathyroidism is associated with increased all-cause mortality.
Hypoparathyroidism can have the following causes:
- Removal of, or trauma to, the parathyroid glands due to thyroid surgery (thyroidectomy), parathyroid surgery (parathyroidectomy) or other surgical interventions in the central part of the neck (such as operations on the larynx and/or pharynx) is a recognized cause. It is the most common cause of hypoparathyroidism. Although surgeons generally make attempts to spare normal parathyroid glands at surgery, inadvertent injury to the glands or their blood supply is still common. When this happens, the parathyroids may cease functioning. This is usually temporary but occasionally long term (permanent).
- Kenny-Caffey Syndrome
- Autoimmune invasion and destruction is the most common non-surgical cause. It can occur as part of autoimmune polyendocrine syndromes.
- Hemochromatosis can lead to iron accumulation and consequent dysfunction of a number of endocrine organs, including the parathyroids.
- Absence or dysfunction of the parathyroid glands is one of the components of chromosome 22q11 microdeletion syndrome (other names: DiGeorge syndrome, Schprintzen syndrome, velocardiofacial syndrome).
- Magnesium deficiency
- A defect in the calcium receptor leads to a rare congenital form of the disease
- Idiopathic (of unknown cause), occasionally familial (e.g. Barakat syndrome (HDR syndrome) a genetic development disorder resulting in hypoparathyroidism, sensorineural deafness and renal disease)
Radiation exposure increases the risk of primary hyperparathyroidism. A number of genetic conditions including multiple endocrine neoplasia syndromes also increase the risk.
Certain medications can have the unintended side effect of affecting thyroid function. While some medications can lead to significant hypothyroidism or hyperthyroidism and those at risk will need to be carefully monitored, some medications may affect thyroid hormone lab tests without causing any symptoms or clinical changes, and may not require treatment. The following medications have been linked to various forms of thyroid disease:
- Amiodarone (more commonly can lead to hypothyroidism, but can be associated with some types of hyperthyroidism)
- Lithium salts (hypothyroidism)
- Some types of interferon and IL-2 (thyroiditis)
- Glucocorticoids, dopamine agonists, and somatostatin analogs (block TSH, which can lead to hypothyroidism)
Hyperthyroidism is a state in which the body is producing too much thyroid hormone. The main hyperthyroid conditions are:
- Graves' disease
- Toxic thyroid nodule
- Thyroid storm
- Toxic nodular struma (Plummer's disease)
- Hashitoxicosis: "transient" hyperthyroidism that can occur in Hashimoto's thyroiditis
Parathyroid adenoma can be associated with overexpression of the cyclin D1 gene.
A parathyroid adenoma is a benign tumor of the parathyroid gland. It generally causes hyperparathyroidism; there are very few reports of parathyroid adenomas that were not associated with hyperparathyroidism.
A human being usually has four parathyroid glands located on the back surface of the thyroid in the neck. The parathyroids secrete parathyroid hormone (PTH), which increases the concentration of calcium in the blood by inducing the bones to release calcium into the blood and the kidneys to reabsorb it from the urine into the blood. When a parathyroid adenoma causes hyperparathyroidism, more parathyroid hormone is secreted, causing the calcium concentration of the blood to rise, resulting in hypercalcemia.
Tertiary hyperparathyroidism is a state of excessive secretion of parathyroid hormone (PTH) after a long period of secondary hyperparathyroidism and resulting in a high blood calcium level. It reflects development of autonomous (unregulated) parathyroid function following a period of persistent parathyroid stimulation.
The basis of treatment is still prevention in chronic kidney failure, starting medication and dietary restrictions long before dialysis treatment is initiated. Cinacalcet has greatly reduced the number of patients who ultimately require surgery for secondary hyperparathyroidism; however, approximately 5% of patients do not respond to medical therapy.
When secondary hyperparathyroidism is corrected and the parathyroid glands remain hyperfunctioning, it becomes tertiary hyperparathyroidism. The treatment of choice is surgical removal of three and one half parathyroid glands.
Parathyroid cancer occurs in midlife at the same rate in men and women.
Conditions that appear to result in an increased risk of parathyroid cancer include multiple endocrine neoplasia type 1, autosomal dominant familial isolated hyperparathyroidism and hyperparathyroidism-jaw tumor syndrome (which also is hereditary). Parathyroid cancer has also been associated with external radiation exposure, but, most reports describe an association between radiation and the more common parathyroid adenoma.
Hyperplasia may be due to any number of causes, including increased demand (for example, proliferation of basal layer of epidermis to compensate skin loss), chronic inflammatory response, hormonal dysfunctions, or compensation for damage or disease elsewhere. Hyperplasia may be harmless and occur on a particular tissue. An example of a normal hyperplastic response would be the growth and multiplication of milk-secreting glandular cells in the breast as a response to pregnancy, thus preparing for future breast feeding.
Perhaps the most interesting and potent effect IGF has on the human body is its ability to cause hyperplasia, which is an actual splitting of cells. By contrast, hypertrophy is what occurs, for example, to skeletal muscle cells during weight training and steroid use and is simply an increase in the size of the cells. With IGF use, one is able to cause hyperplasia which actually increases the number of muscle cells present in the tissue. Weight training with or without anabolic steroid use enables these new cells to mature in size and strength. It is theorized that hyperplasia may also be induced through specific power output training for athletic performance, thus increasing the number of muscle fibers instead of increasing the size of a single fiber.
Hypoparathyroidism is decreased function of the parathyroid glands with underproduction of parathyroid hormone. This can lead to low levels of calcium in the blood, often causing cramping and twitching of muscles or tetany (involuntary muscle contraction), and several other symptoms. The condition can be inherited, but it is also encountered after thyroid or parathyroid gland surgery, and it can be caused by immune system-related damage as well as a number of rarer causes. The diagnosis is made with blood tests, and other investigations such as genetic testing depending on the results. The treatment of hypoparathyroidism is limited by the fact that there is no exact form of the hormone that can be administered as replacement. However teriparatide, brand name Forteo, a biosimilar peptide to parathyroid hormone, may be given by injection. Calcium replacement or vitamin D can ameliorate the symptoms but can increase the risk of kidney stones and chronic kidney disease.
Endocrine disorder is more common in women than men, as it is associated with menstrual disorders.
A calcimimetic (such as "cinacalcet") is a potential therapy for some people with severe hypercalcemia and primary hyperparathyroidism who are unable to undergo parathyroidectomy and for secondary hyperparathyroidism on dialysis.
In the treatment of secondary hyperparathyroidism due to chronic kidney disease on dialysis calcimimetics do not appear to affect the risk of early death. They do decrease the need for a parathyroidectomy but cause more issues with low blood calcium levels and vomiting.
Many conditions are associated with disorders of the function of the parathyroid gland. Parathyroid diseases can be divided into those causing hyperparathyroidism, and those causing hypoparathyroidism.
The single major disease of parathyroid glands is overactivity of one or more of the parathyroid lobes, which make too much parathyroid hormone, causing a potentially serious calcium imbalance. This is called hyperparathyroidism; it leads to hypercalcemia, kidney stones, osteoporosis, and various other symptoms. Hyperparathyroidism was first described in 1925 and the symptoms have collectively become known as "moans, groans, stones, and bones." By far, the most common symptom is fatigue, but depression, memory loss, and bone aches are also very common. Primary hyperparathyroidism is relatively more common in postmenopausal women. The primary treatment for this disease is the surgical removal of the faulty gland.
If a patient has elevated calcium, several different types of tests can be used to locate the abnormal glands. The most common and most accurate test to find a parathyroid tumor is the Sestamibi scan. The Sestamibi scan does not have high resolution. Neck ultrasound has higher resolution, but requires some expertise to perform. Ultrasound's shortcomings include: it cannot determine glandular function (normal vs. hyperfunctioning) or visualize unusual locations such as retropharyngeal or mediastinal. Thin cut computed tomography of the neck can reveal glands in locations that the ultrasound cannot evaluate well; e.g. retropharyngeal, mediastinal. These tests are ordered by an endocrinologist or a surgeon that specializes in parathyroid surgery. Often, these "localizing" tests used to "find" the bad parathyroid gland are not successful in locating which parathyroid gland has become a tumor. This often causes confusion for the patient and doctor, since the tumor was not located. This simply means that the tumor was not found using these tests; it does not mean the tumor does not exist. The use of ultrasound-guided FNA, and parathyroid hormone washings can confirm the abnormal glands. For decades, it has been known that the best way to find a parathyroid tumor is through a very experienced parathyroid surgeon.
Even if a patient has a non-localizing Sestamibi scan (a negative sestamibi scan), he/she should almost always have a neck exploration to remove the tumor if he/she has high calcium levels, among other symptoms. Minimally-invasive parathyroid surgery is becoming more available, but, depending on the expertise of the surgeon, the patient may need to have a positive sestamibi scan before a minimally-invasive operation is attempted. Some of the most experienced surgeons perform mini-parathyroid surgery on all patients, but this is available only at highly specialized centers. Some patients will need both sides of their necks explored to find the dysfunctional gland(s).
Another related condition is called secondary hyperparathyroidism (HPT for short), which is common in patients with chronic kidney disease on dialysis. In secondary HPT, the parathyroid glands make too much parathyroid hormone (PTH) because the kidneys have failed, and the calcium and phosphorus are out of balance. Even though one may not have any symptoms, treating secondary HPT is important. Cinacalcet (Sensipar) is a medicine that can help treat such dialysis patients and is available by prescription only. Most experts believe that Sensipar should not be used for patients with primary hyperparathyroidism (patients that have a high calcium and are not on kidney dialysis).
Parathyroid surgery is usually performed when there is hyperparathyroidism. This condition causes many diseases related with calcium reabsorption, because the principal function of the parathyroid hormone is to regulate it. Parathyroid surgery could be performed in two different ways: first is a complete parathyroidectomy, and second is the auto transplantation of the removed parathyroid glands. There are various conditions that can indicate the need for the removal or transplant of the parathyroid glands. Hyperparathyroidism is a condition caused by overproduction of PTH, and can be divided into three types.
- Primary hyperparathyroidism happens when the normal mechanism of regulation by negative feedback of calcium is interrupted, or in other words the amount of blood calcium would ordinarily signal less production of PTH. Most of the time this is caused by adenomas, hyperplasia or carcinomas.
- Secondary hyperparathyroidism normally occurs in patients that suffer renal disease. Poor kidney function leads to a mineral disequilibrium that causes the glands hypertrophy in order to synthesize and release more PTH.
- Tertiary hyperparathyroidism develops when the hyperplastic gland of secondary hyperparathyroidism constantly releases PTH, independent of the regulation systems.
Another condition is hypercalcemia, which refers to a calcium level above 10.5 mg/dL. Consequences of this are heart rhythm diseases, and extra production of gastrin that causes peptic ulcers.
Parathyroid transplant is recommended if the parathyroid glands are removed accidentally during a thyroidectomy. They are autotransplanted to the nearby sternocleidomastoid muscle, or to the forearm so that another intervention would be less risky. A biopsy is recommended to be sure that the transplanted tissue is parathyroid and not a lymph node with metastatic disease. During parathyroid surgery if there is an adenoma the transplantation is not recommended; instead it is cryopreserved for research an if there is a recurrent hypoparathyroidism.
The surgery is indicated for all patients that are diagnosed with hyperparathyroidism with or without symptoms, especially in younger patients. In some cases the surgery works as therapy for nephrolithiasis, bone changes, and neuromuscular symptoms.
In endocrinology, medical emergencies include diabetic ketoacidosis, hyperosmolar hyperglycemic state, hypoglycemic coma, acute adrenocortical insufficiency, phaeochromocytoma crisis, hypercalcemic crisis, thyroid storm, myxoedema coma and pituitary apoplexy.
Emergencies arising from decompensated pheochromocytomas or parathyroid adenomas are sometimes referred for emergency resection when aggressive medical therapies fail to control the patient's state, however the surgical risks are significant, especially blood pressure lability and the possibility of cardiovascular collapse after resection (due to a brutal drop in respectively catecholamines and calcium, which must be compensated with gradual normalization). It remains debated when emergency surgery is appropriate as opposed to urgent or elective surgery after continued attempts to stabilize the patient, notably in view of newer and more efficient medications and protocols.
If left untreated, the disease will progress to tertiary hyperparathyroidism, where correction of the underlying cause will not stop excess PTH secretion, i.e. parathyroid gland hypertrophy becomes irreversible. In contrast with secondary hyperparathyroidism, tertiary hyperparathyroidism is associated with hypercalcemia rather than hypocalcemia.
Depending on source, the overall 5-year survival rate for medullary thyroid cancer is 80%, 83% or 86%, and the 10-year survival rate is 75%.
By overall cancer staging into stages I to IV, the 5-year survival rate is 100% at stage I, 98% at stage II, 81% at stage III and 28% at stage IV. The prognosis of MTC is poorer than that of follicular and papillary thyroid cancer when it has metastasized (spread) beyond the thyroid gland.
The prognostic value of measuring calcitonin and carcinoembryonic antigen (CEA) concentrations in the blood was studied in 65 MTC patients who had abnormal calcitonin levels after surgery (total thyroidectomy and lymph node dissection). The prognosis correlated with the rate at which the postoperative calcitonin concentration doubles, termed the calcitonin doubling time (CDT), rather than the pre- or postoperative absolute calcitonin level:
- CDT less than 6 months: 3 patients out of 12 (25%) survived 5 years. 1 patient out of 12 (8%) survived 10 years. All died within 6 months to 13.3 years.
- CDT between 6 months and 2 years: 11 patients out of 12 (92%) survived 5 years. 3 patients out of 8 (37%) survived 10 years. 4 patients out of 12 (25%) survived to the end of the study.
- CDT more than 2 years: 41 patients out of 41 (100%) were alive at the end of the study. These included 1 patient whose calcitonin was stable, and 11 patients who had decreasing calcitonin levels.
The calcitonin doubling time was a better predictor of MTC survival than CEA but following both tests is recommended.
Hyperplasia is considered to be a physiological (normal) response to a specific stimulus, and the cells of a hyperplastic growth remain subject to normal regulatory control mechanisms. However, hyperplasia can also occur as a pathological response, if an excess of hormone or growth factor is responsible for the stimuli. Similarly to physiological hyperplasia, cells that undergo pathologic hyperplasia are controlled by growth hormones, and cease to proliferate if such stimuli are removed. This differs from neoplasia (the process underlying cancer and benign tumors), in which genetically abnormal cells manage to proliferate in a non-physiological manner which is unresponsive to normal stimuli. That being said, the effects caused by pathologic hyperplasia can provide a suitable foundation from which neoplastic cells may develop.
Broadly speaking, endocrine disorders may be subdivided into three groups:
1. Endocrine gland hyposecretion (leading to hormone deficiency)
2. Endocrine gland hypersecretion (leading to hormone excess)
3. Tumours (benign or malignant) of endocrine glands
Endocrine disorders are often quite complex, involving a mixed picture of hyposecretion and hypersecretion because of the feedback mechanisms involved in the endocrine system. For example, most forms of hyperthyroidism are associated with an excess of thyroid hormone and a low level of thyroid stimulating hormone.
Parathyroid carcinoma is sometimes diagnosed during surgery for primary hyperparathyroidism. If the surgeon suspects carcinoma based on severity or invasion of surrounding tissues by a firm parathyroid tumor, aggressive excision is performed, including the thyroid and surrounding tissues as necessary.
Agents such as calcimimetics (for example, cinacalcet) are used to mimic calcium and are able to activate the parathyroid calcium-sensing receptor (making the parathyroid gland "think" we have more calcium than we actually do), therefore lowering the calcium level, in an attempt to decrease the hypercalcemia.
Bone disease is common among the elderly individual, but adolescents can be diagnosed with this disorder as well. There are many bone disorders such as osteoporosis, Paget's disease, hypothyroidism. Although there are many forms of bone disorders, they all have one thing in common; abnormalities of specific organs involved, deficiency in vitamin D or low Calcium in diet, which results in poor bone mineralization.
In endocrinology, the terms 'primary' and 'secondary' are used to describe the abnormality (e.g., elevated aldosterone) in relation to the defect, "i.e.", the tumor's location. Hyperaldosteronism can also be caused by plant poisoning, where the patient has been exposed to too much licorice. Licorice is a perennial herb that is used in making candies and in cooking other desserts because of its sweet taste. It contains the chemical glycyrrhizin, which has medicinal uses, but at higher levels it can be toxic. It has the potential for causing problems with sodium and potassium in the body. It also interferes with the enzyme in the kidneys that converts cortisol to cortisone.
A parathyroid neoplasm is a tumor of the parathyroid gland.
Types include:
- Parathyroid adenoma
- Parathyroid carcinoma