Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most cases of familial hypocalciuric hypercalcemia are asymptomatic. Laboratory signs of FHH include:
- Hypercalcemia
- Hypocalciuria ( Ca excretion rate < 0.02 mmol/L)
- Hypermagnesemia
- High normal to mildly elevated parathyroid hormone
Most cases of FHH are associated with loss of function mutations in the calcium-sensing receptor (CaSR) gene, expressed in parathyroid and kidney tissue. These mutations decrease the receptor's sensitivity to calcium, resulting in reduced receptor stimulation at normal serum calcium levels. As a result, inhibition of parathyroid hormone release does not occur until higher serum calcium levels are attained, creating a new equilibrium. This is the opposite of what happens with the CaSR sensitizer, cinacalcet. Functionally, parathyroid hormone (PTH) increases calcium resorption from the bone and increases phosphate excretion from the kidney which increases serum calcium and decreases serum phosphate. Individuals with FHH, however, typically have normal PTH levels, as normal calcium homeostasis is maintained, albeit at a higher equilibrium set point. As a consequence, these individuals are not at increased risk of the complications of hyperparathyroidism.
Another form has been associated with chromosome 3q.
Renal tuberculosis
And other causes of hypercalcemia (and thus hypercalciuria)
- Immobilization (leading to hypercalcemia and hypercalciuria)
- Milk-alkali syndrome
- Hypervitaminosis D
- Multiple myeloma
Among people hospitalized with high blood calcium, milk-alkali syndrome is the third most common cause, after hyperparathyroidism and cancer.
These conditions can cause nephrocalcinosis in association with hypercalciuria without hypercalcemia:
- Distal renal tubular acidosis
- Medullary sponge kidney
- Neonatal nephrocalcinosis and loop diuretics
- Inherited tubulopathies
- Chronic hypokalemia
- Beta thalassemia
In mild cases, full recovery is expected. In severe cases, permanent kidney failure or death may result.
Primary hyperparathyroidism and malignancy account for about 90% of cases of hypercalcaemia.
Hypercalcaemia, also spelled hypercalcemia, is a high calcium (Ca) level in the blood serum. The normal range is 2.1–2.6 mmol/L (8.8–10.7 mg/dL, 4.3–5.2 mEq/L) with levels greater than 2.6 mmol/L defined as hypercalcemia. Those with a mild increase that has developed slowly typically have no symptoms. In those with greater levels or rapid onset, symptoms may include abdominal pain, bone pain, confusion, depression, weakness, kidney stones, or an abnormal heart rhythm including cardiac arrest.
Most cases are due to primary hyperparathyroidism or cancer. Other causes include sarcoidosis, tuberculosis, Paget disease, multiple endocrine neoplasia (MEN), vitamin D toxicity, familial hypocalciuric hypercalcaemia, and certain medications such as lithium and hydrochlorothiazide. Diagnosis should generally include either a corrected calcium or ionized calcium level and be confirmed after a week. Specific changes, such as a shortened QT interval, may be seen on an electrocardiogram (ECG).
Treatment may include intravenous fluids, furosemide, calcitonin, or pamidronate in addition to treating the underlying cause. The evidence for furosemide, however, is poor. In those with very high levels hospitalization may be required. Hemodialysis may be used in those who do not respond to other treatments. In those with vitamin D toxicity steroids may be useful. Hypercalcemia is relatively common. Primary hyperparathyroidism occurs in between one and seven per thousand people and hypercalcemia occurs in about 2.7% of those with cancer.
Radiation exposure increases the risk of primary hyperparathyroidism. A number of genetic conditions including multiple endocrine neoplasia syndromes also increase the risk.
Tertiary hyperparathyroidism is seen in patients with long-term secondary hyperparathyroidism, which eventually leads to hyperplasia of the parathyroid glands and a loss of response to serum calcium levels. This disorder is most often seen in patients with chronic renal failure and is an autonomous activity.
The most common cause of primary hyperparathyroidism is a sporadic, single parathyroid adenoma resulting from a clonal mutation (~97%). Less common are parathyroid hyperplasia (~2.5%), parathyroid carcinoma (malignant tumor), and adenomas in more than one gland (together ~0.5%).
Primary hyperparathyroidism is also a feature of several familial endocrine disorders: Multiple endocrine neoplasia type 1 and type 2A (MEN type 1 and MEN type 2A), and familial hyperparathyroidism.
Genetic associations include:
In all cases, the disease is idiopathic, but is thought to involve inactivation of tumor suppressor genes (Menin gene in MEN1), or involve gain of function mutations (RET proto-oncogene MEN 2a).
Recently, it was demonstrated that liquidators of the Chernobyl power plant are faced with a substantial risk of primary hyperparathyroidism, possibly caused by radioactive strontium isotopes.
Primary hyperparathyroidism can also result from pregnancy. It is apparently very rare, with only about 110 cases have so far been reported in world literature, but this is probably a considerable underestimate of its actual prevalence in pregnant women.
Hypocalcemia is common and can occur unnoticed with no symptoms or, in severe cases, can have dramatic symptoms and be life-threatening. Hypocalcemia can be parathyroid related or vitamin D related. Parathyroid related hypocalcemia includes post-surgical hypoparathyroidism, inherited hypoparathyroidism, pseudohypoparathyroidism, and pseudo-pseudohypoparathyroidism. Post-surgical hypoparathyroidism is the most common form, and can be temporary (due to suppression of tissue after removal of a malfunctioning gland) or permanent, if all parathyroid tissue has been removed. Inherited hypoparathyroidism is rare and is due to a mutation in the calcium sensing receptor. Pseudohypoparathyroidism is maternally inherited and is categorized by hypocalcemia and hyperphosphatemia. Finally, pseudo-pseudohypoparathyroidism is paternally inherited. Patients display normal parathyroid hormone action in the kidney, but exhibit altered parathyroid hormone action in the bone.
Vitamin D related hypocalcemia may be associated with a lack of vitamin D in the diet, a lack of sufficient UV exposure, or disturbances in renal function. Low vitamin D in the body can lead to a lack of calcium absorption and secondary hyperparathyroidism (hypocalcemia and raised parathyroid hormone). Symptoms of hypocalcemia include numbness in fingers and toes, muscle cramps, irritability, impaired mental capacity and muscle twitching.
Hypercalcemia is suspected to occur in approximately 1 in 500 adults in the general adult population. Like hypocalcemia, hypercalcemia can be non-severe and present with no symptoms, or it may be severe, with life-threatening symptoms. Hypercalcemia is most commonly caused by hyperparathyroidism and by malignancy, and less commonly by vitamin D intoxication, familial hypocalciuric hypercalcemia and by sarcoidosis. Hyperparathyroidism occurs most commonly in postmenopausal women. Hyperparathyroidism can be caused by a tumor, or adenoma, in the parathyroid gland or by increased levels of parathyroid hormone due to hypocalcemia. Approximately 10% of cancer sufferers experience hypercalcemia due to malignancy. Hypercalcemia occurs most commonly in breast cancer, lymphoma, prostate cancer, thyroid cancer, lung cancer, myeloma, and colon cancer. It may be caused by secretion of parathyroid hormone-related peptide by the tumor (which has the same action as parathyroid hormone), or may be a result of direct invasion of the bone, causing calcium release.
Symptoms of hypercalcemia include anorexia, nausea, vomiting, constipation, abdominal pain, lethargy, depression, confusion, polyuria, polydipsia and generalized aches and pains.
Hahner et al. investigated the frequency, causes and risk factors for adrenal crisis in patients with chronic adrenal insufficiency. Annane et al.'s landmark 2002 study found a very high rate of relative adrenal insufficiency among the enrolled patients with septic shock.
The incidence of primary hyperparathyroidism is approximately 1 per 1,000 people (0.1%), while there are 25-30 new cases per 100,000 people per year in the United States. The prevalence of primary hyperparathyroidism has been estimated to be 3 in 1000 in the general population and as high as 21 in 1000 in postmenopausal women. It is almost exactly three times as common in women as men.
Primary hyperparathyroidism is associated with increased all-cause mortality.
The disease has been reported to affect 3 per 1000 infants younger than 6 months in the United States. No predilection by race or sex has been established. Almost all cases occur by the age of 5 months. The familial form is inherited in an autosomal dominant fashion with variable penetrance. The familial form tends to have an earlier onset and is present at birth in 24% of cases, with an average age at onset of 6.8 weeks. The average age at onset for the sporadic form is 9–11 weeks.
Cortical hyperostosis is a potential side effect of long-term use of prostaglandins in neonates.
Epidemiologically speaking, nephronophthisis, occurs equally in both sexes, and has an estimate 9 in about 8 million rate in individuals. Nephronophthisis is the leading monogenic cause of end-stage renal disease.
Adrenal crisis is triggered by physiological stress (such as trauma). Activities that have an elevated risk of trauma are best avoided. Treatment must be given within two hours of trauma and consequently it is advisable to carry injectable hydrocortisone in remote areas.
Malignant infantile osteopetrosis, also known as infantile autosomal recessive osteopetrosis or simply infantile osteopetrosis is a rare osteosclerosing type of skeletal dysplasia that typically presents in infancy and is characterized by a unique radiographic appearance of generalized hyperostosis - excessive growth of bone.
The generalized increase in bone density has a special predilection to involve the medullary portion with relative sparing of the cortices. Obliteration of bone marrow spaces and subsequent depression of the cellular function can result in serious hematologic complications. Optic atrophy and cranial nerve damage secondary to bony expansion can result in marked morbidity. The prognosis is extremely poor in untreated cases. Plain radiography provides the key information to the diagnosis. Clinical and radiologic correlations are also fundamental to the diagnostic process, with additional gene testing being confirmatory.
There is no known treatment at present, although some investigators have tried to lessen the hypercalcemia with various forms of bisphosphonates.
Jansen's metaphyseal chondrodysplasia (JMC) is a disease that results from ligand-independent activation of the type 1 of the parathyroid hormone receptor (PTHR1), due to one of three reported mutations (activating mutation).
JMC is extremely rare, and as of 2007 there are fewer than 20 reported cases worldwide.
Approximately eight to 40 children are born in the United States each year with the malignant infantile type of osteopetrosis. One in every 100,000 to 500,000 individuals is born with this form of osteopetrosis. Higher rates have been found in Denmark and Costa Rica. Males and females are affected in equal numbers.
The adult type of osteopetrosis affects about 1,250 individuals in the United States. One in every 200,000 individuals is affected by the adult type of osteopetrosis. Higher rates have been found in Brazil. Males and females are affected in equal numbers.
The odds are greater in the Russian region of Mari El (1 of every 14,000 newborns) and much greater in Chuvashia (1 of every 3,500—4,000 newborns) due to genetic features of the Mari people and Chuvash people, respectively.
The only effective line of treatment for malignant infantile osteopetrosis is hematopoietic stem cell transplantation. It has been shown to provide long-term disease-free periods for a significant percentage of those treated; can impact both hematologic and skeletal abnormalities; and has been used successfully to reverse the associated skeletal abnormalities.
Radiographs of at least one case with malignant infantile osteopetrosis have demonstrated bone remodeling and recanalization of medullar canals following hematopoietic stem cell transplantation. This favorable radiographic response could be expected within one year following the procedure - nevertheless, primary graft failure can prove fatal.
The various types of osteopetrosis are caused by genetic changes (mutations) in one of at least ten genes. There is nothing a parent can do before, during or after a pregnancy to cause osteopetrosis in a child.
The genes associated with osteopetrosis are involved in the development and/or function of osteoclasts, cells that break down bone tissue when old bone is being replaced by new bone (bone remodeling). This process is necessary to keep bones strong and healthy. Mutations in these genes can lead to abnormal osteoclasts, or having too few osteoclasts. If this happens, old bone cannot be broken down as new bone is formed, so bones become too dense and prone to breaking.
- Mutations in the CLCN7 gene cause most cases of autosomal dominant osteopetrosis, 10-15% of cases of autosomal recessive osteopetrosis (the most severe form), and all known cases of intermediate autosomal osteopetrosis.
- Mutations in the TCIRG1 gene cause about 50% of cases of autosomal recessive osteopetrosis.
- Mutations in the IKBKG gene cause X-linked osteopetrosis.
- Mutations in other genes are less common causes of osteopetrosis.
- In about 30% percent of affected people, the cause is unknown.
Normally, bone growth is a balance between osteoblasts (cells that create bone tissue) and osteoclasts (cells that destroy bone tissue). Sufferers of osteopetrosis have a deficiency of osteoclasts, meaning too little bone is being resorbed, resulting in too much bone being created.
Perinatal and infantile hypophosphatasia are inherited as autosomal recessive traits with homozygosity or compound heterozygosity for two defective TNSALP alleles. The mode of inheritance for childhood, adult, and odonto forms of hypophosphatasia can be either autosomal dominant or recessive. Autosomal transmission accounts for the fact that the disease affects males and females with equal frequency. Genetic counseling is complicated by the disease’s variable inheritance pattern, and by incomplete penetration of the trait.
Hypophosphatasia is a rare disease that has been reported worldwide and appears to affect individuals of all ethnicities. The prevalence of severe hypophosphatasia is estimated to be 1:100,000 in a population of largely Anglo-Saxon origin. The frequency of mild hypophosphatasia is more challenging to assess because the symptoms may escape notice or be misdiagnosed. The highest incidence of hypophosphatasia has been reported in the Mennonite population in Manitoba, Canada where one in every 25 individuals are considered carriers and one in every 2,500 newborns exhibits severe disease. Hypophosphatasia is considered particularly rare in people of African ancestry in the U.S.