Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Narcosis is potentially one of the most dangerous conditions to affect the scuba diver below about . Except for occasional amnesia of events at depth, the effects of narcosis are entirely removed on ascent and therefore pose no problem in themselves, even for repeated, chronic or acute exposure. Nevertheless, the severity of narcosis is unpredictable and it can be fatal while diving, as the result of illogical behavior in a dangerous environment.
Tests have shown that all divers are affected by nitrogen narcosis, though some experience lesser effects than others. Even though it is possible that some divers can manage better than others because of learning to cope with the subjective impairment, the underlying behavioral effects remain. These effects are particularly dangerous because a diver may feel they are not experiencing narcosis, yet still be affected by it.
The cause of narcosis is related to the increased solubility of gases in body tissues, as a result of the elevated pressures at depth (Henry's law). Modern theories have suggested that inert gases dissolving in the lipid bilayer of cell membranes cause narcosis. More recently, researchers have been looking at neurotransmitter receptor protein mechanisms as a possible cause of narcosis. The breathing gas mix entering the diver's lungs will have the same pressure as the surrounding water, known as the ambient pressure. After any change of depth, the pressure of gases in the blood passing through the brain catches up with ambient pressure within a minute or two, which results in a delayed narcotic effect after descending to a new depth. Rapid compression potentiates narcosis owing to carbon dioxide retention.
A divers' cognition may be affected on dives as shallow as , but the changes are not usually noticeable. There is no reliable method to predict the depth at which narcosis becomes noticeable, or the severity of the effect on an individual diver, as it may vary from dive to dive even on the same day.
Significant impairment due to narcosis is an increasing risk below depths of about , corresponding to an ambient pressure of about . Most sport scuba training organizations recommend depths of no more than because of the risk of narcosis. When breathing air at depths of – an ambient pressure of about – narcosis in most divers leads to hallucinations, loss of memory, and unconsciousness. A number of divers have died in attempts to set air depth records below . Because of these incidents, "Guinness World Records" no longer reports on this figure.
Narcosis has been compared with altitude sickness regarding its variability of onset (though not its symptoms); its effects depend on many factors, with variations between individuals. Thermal cold, stress, heavy work, fatigue, and carbon dioxide retention all increase the risk and severity of narcosis. Carbon dioxide has a high narcotic potential and also causes increased blood flow to the brain, increasing the effects of other gases. Increased risk of narcosis results from increasing the amount of carbon dioxide retained through heavy exercise, shallow or skip breathing, or because of poor gas exchange in the lungs.
Narcosis is known to be additive to even minimal alcohol intoxication, and also to the effects of other drugs such as cannabis (which is more likely than alcohol to have effects that last into a day of abstinence from use). Other sedative and analgesic drugs, such as opiate narcotics and benzodiazepines, add to narcosis.
Hydrogen narcosis (also known as the hydrogen effect) is the psychotropic state induced by breathing hydrogen at high pressures. Hydrogen narcosis produces symptoms such as hallucinations, disorientation, and confusion, which are similar to hallucinogenic drugs. It can be experienced by deep-sea divers who dive to below sea level breathing hydrogen mixtures. However, hydrogen has far less narcotic effect than nitrogen (which causes the better known nitrogen narcosis) and is very rarely used in diving. In tests of the effect of hydrogen narcosis, where divers dived to with a hydrogen–helium–oxygen (Hydreliox) mixture containing 49% hydrogen, it was found that while the narcotic effect of hydrogen was detectable, the neurological symptoms of high-pressure nervous syndrome were only moderate.
The following environmental factors have been shown to increase the risk of DCS:
- the magnitude of the pressure reduction ratio – a large pressure reduction ratio is more likely to cause DCS than a small one.
- repetitive exposures – repetitive dives within a short period of time (a few hours) increase the risk of developing DCS. Repetitive ascents to altitudes above within similar short periods increase the risk of developing altitude DCS.
- the rate of ascent – the faster the ascent the greater the risk of developing DCS. The US Navy Dive Manual indicates that ascent rates greater than about when diving increase the chance of DCS, while recreational dive tables such as the Bühlmann tables require an ascent rate of with the last taking at least one minute. An individual exposed to a rapid decompression (high rate of ascent) above has a greater risk of altitude DCS than being exposed to the same altitude but at a lower rate of ascent.
- the duration of exposure – the longer the duration of the dive, the greater is the risk of DCS. Longer flights, especially to altitudes of and above, carry a greater risk of altitude DCS.
- underwater diving before flying – divers who ascend to altitude soon after a dive increase their risk of developing DCS even if the dive itself was within the dive table safe limits. Dive tables make provisions for post-dive time at surface level before flying to allow any residual excess nitrogen to outgas. However, the pressure maintained inside even a pressurized aircraft may be as low as the pressure equivalent to an altitude of above sea level. Therefore, the assumption that the dive table surface interval occurs at normal atmospheric pressure is invalidated by flying during that surface interval, and an otherwise-safe dive may then exceed the dive table limits.
- diving before travelling to altitude – DCS can occur without flying if the person moves to a high-altitude location on land immediately after diving, for example, scuba divers in Eritrea who drive from the coast to the Asmara plateau at increase their risk of DCS.
- diving at altitude – diving in water whose surface altitude is above — for example, Lake Titicaca is at — without using versions of decompression tables or dive computers that are modified for high-altitude.
Although the occurrence of DCS is not easily predictable, many predisposing factors are known. They may be considered as either environmental or individual.
Decompression sickness and arterial gas embolism in recreational diving are associated with certain demographic, environmental, and dive style factors. A statistical study published in 2005 tested potential risk factors: age, gender, body mass index, smoking, asthma, diabetes, cardiovascular disease, previous decompression illness, years since certification, dives in the last year, number of diving days, number of dives in a repetitive series, last dive depth, nitrox use, and drysuit use. No significant associations with risk of decompression sickness or arterial gas embolism were found for asthma, diabetes, cardiovascular disease, smoking, or body mass index. Increased depth, previous DCI, larger number of consecutive days diving, and being male were associated with higher risk for decompression sickness and arterial gas embolism. Nitrox and drysuit use, greater frequency of diving in the past year, increasing age, and years since certification were associated with lower risk, possibly as indicators of more extensive training and experience.
Acute hydrogen cyanide poisoning can result from inhalation of fumes from burning polymer products that use nitrile in their production, such as polyurethane, or vinyl. It can also be caused by breakdown of nitroprusside into nitric oxide and cyanide. Nitroprusside may be used during treatment of hypertensive crisis.
In addition to its uses as a pesticide and insecticide, cyanide is contained in tobacco smoke and smoke from building fires, and is present in many seeds or kernels such as those of almonds, apricots, apples, oranges, and in foods including cassava (also known as yuca or manioc), and bamboo shoots. Vitamin B12, in the form of hydroxocobalamin (also spelled hydroxycobalamin), may reduce the negative effects of chronic exposure, and a deficiency can lead to negative health effects following exposure.
Cyanide poisoning is poisoning that results from exposure to a number of forms of cyanide. Early symptoms include headache, dizziness, fast heart rate, shortness of breath, and vomiting. This may then be followed by seizures, slow heart rate, low blood pressure, loss of consciousness, and cardiac arrest. Onset of symptoms is usually within a few minutes. If a person survives, there may be long-term neurological problems.
Toxic cyanide-containing compounds include hydrogen cyanide gas and a number of cyanide salts. Poisoning is relatively common following breathing in smoke from a house fire. Other potential routes of exposure include workplaces involved in metal polishing, certain insecticides, the medication nitroprusside, and certain seeds such as those of apples and apricots. Liquid forms of cyanide can be absorbed through the skin. Cyanide ions interfere with cellular respiration, resulting in the body's tissues being unable to use oxygen.
Diagnosis is often difficult. It may be suspected in a person following a house fire who has a decreased level of consciousness, low blood pressure, or high blood lactate. Blood levels of cyanide can be measured but take time. Levels of 0.5–1 mg/L are mild, 1–2 mg/L are moderate, 2–3 mg/L are severe, and greater than 3 mg/L generally result in death.
If exposure is suspected, the person should be removed from the source of exposure and decontaminated. Treatment involves supportive care and giving the person 100% oxygen. Hydroxocobalamin (vitamin B12) appears to be useful as an antidote and is generally first-line. Sodium thiosulphate may also be given. Historically cyanide has been used for mass suicide and by the Nazis for genocide.
Increased concentrations of urinary beta-2 microglobulin can be an early indicator of renal dysfunction in persons chronically exposed to low but excessive levels of environmental cadmium. The urinary beta-2 microglobulin test is an indirect method of measuring cadmium exposure. Under some circumstances, the Occupational Health and Safety Administration requires screening for renal damage in workers with long-term exposure to high levels of cadmium. Blood or urine cadmium concentrations provide a better index of excessive exposure in industrial situations or following acute poisoning, whereas organ tissue (lung, liver, kidney) cadmium concentrations may be useful in fatalities resulting from either acute or chronic poisoning. Cadmium concentrations in healthy persons without excessive cadmium exposure are generally less than 1 μg/L in either blood or urine. The ACGIH biological exposure indices for blood and urine cadmium levels are 5 μg/L and 5 μg/g creatinine, respectively, in random specimens. Persons who have sustained renal damage due to chronic cadmium exposure often have blood or urine cadmium levels in a range of 25-50 μg/L or 25-75 μg/g creatinine, respectively. These ranges are usually 1000-3000 μg/L and 100-400 μg/g, respectively, in survivors of acute poisoning and may be substantially higher in fatal cases.
It is likely that HPNS cannot be entirely prevented but there are effective methods to delay or change the development of the symptoms.
Utilizing slow rates of compression or adding stops to the compression have been found to prevent large initial decrements in performance.
Including other gases in the helium–oxygen mixture, such as nitrogen (creating trimix) or hydrogen (producing hydreliox) suppresses the neurological effects.
Alcohol, anesthetics and anticonvulsant drugs have had varying results in suppressing HPNS with animals. None are currently in use for humans.
Additionally, there are environmental diseases caused by the aromatic carbon compounds including : benzene, hexachlorocyclohexane, toluene diisocyanate, phenol, pentachlorophenol, quinone and hydroquinone.
Also included are the aromatic nitro-, amino-, and pyridilium-deratives: nitrobenzene, dinitrobenzene, trinitrotoluene, paramethylaminophenol sulfate (Metol), dinitro-ortho-cresol, aniline, trinitrophenylmethylnitramine (tetryl), hexanitrodiphenylamine (aurantia), phenylenediamines, and paraquat.
The aliphatic carbon compounds can also cause environmental disease. Included in these are methanol, nitroglycerine, nitrocellulose, dimethylnitrosamine, and the halogenated hydrocarbons: methyl chloride, methyl bromide, trichloroethylene, carbon tetrachloride, and the chlorinated naphthalenes. Also included are glycols: ethylene chlorhydrin and diethylene dioxide as well as carbon disulfide, acrylonitrile, acrylamide, and vinyl chloride.
Cadmium is a naturally occurring toxic heavy metal with common exposure in industrial workplaces, plant soils, and from smoking. Due to its low permissible exposure to humans, overexposure may occur even in situations where trace quantities of cadmium are found. Cadmium is used extensively in electroplating, although the nature of the operation does not generally lead to overexposure. Cadmium is also found in some industrial paints and may represent a hazard when sprayed. Operations involving removal of cadmium paints by scraping or blasting may pose a significant hazard. Cadmium is also present in the manufacturing of some types of batteries. Exposures to cadmium are addressed in specific standards for the general industry, shipyard employment, construction industry, and the agricultural industry.
Smoke inhalation injury, either by itself but more so in the presence of body surface burn, can result in severe lung-induced morbidity and mortality. The most common cause of death in burn centers is now respiratory failure. The September 11 attacks in 2001 and forest fires in U.S. states such as California and Nevada are examples of incidents that have caused smoke inhalation injury. Injury to the lungs and airways is not only due to deposition of fine particulate soot but also due to the gaseous components of smoke, which include phosgene, carbon monoxide, and sulfur dioxide.
Chlorine is a relatively common gas in industry with a variety of uses. It is used to disinfect water as well as being a part of the sanitation process for sewage and industrial waste. Chlorine is also used as a bleaching agent during the production of paper and cloth. Many household cleaning products, including bleach, contain chlorine. Given the volume and ease of chlorine for industrial and commercial use, exposure could occur from an accidental spill or a deliberate attack. The National Institute for Occupational Safety and Health recommends that a person wear splash proof goggles, a face shield and a respirator mask when working in the vicinity of chlorine gas. Because chlorine is a gas at room temperature, most exposure occurs via inhalation. Exposure may also occur through skin or eye contact or by ingesting chlorine-contaminated food or water. Chlorine is a strong oxidizing element causing the hydrogen to split from water in moist tissue, resulting in nascent oxygen and hydrogen chloride that cause corrosive tissue damage. Additionally oxidation of chlorine may form hypochlorous acid, which can penetrate cells and react with cytoplasmic proteins destroying cell structure. Chlorine’s odor provides early warning signs of exposure but causes olfactory fatigue or adaptations, reducing awareness of exposure at low concentrations. With increased exposure, symptoms may progress to labored respirations, severe coughing, chest tightness, wheezing, dyspnea, and broncospasm associated with a decrease in oxygen saturation level. . Severe exposure may result in changes in upper and lower airways resulting in an acute lung injury, which may not be present until several hours after exposure. A recent chlorine gas leak in Pune, India, landed 20 individuals in the hospital. Though that was an accidental exposure, chlorine gas has been used as a weapon of warfare since World War I, most recently in 2007 in Iraq.
Noxious gases can be categorized as : Simple asphyxiants, chemical asphyxiants, and irritant gases. The simple asphixiants are nitrogen, methane, and carbon dioxide.
The chemical asphyxiants are carbon monoxide, sulfuretted hydrogen and hydrogen cyanide.
The irritant gases are sulfur dioxide, ammonia, nitrogen dioxide, chlorine, phosgene, and fluorine and its compounds, which include luroine and hydrofluoric acid, fluorspar, fluorapatite, cryolite, and organic fluorine compounds.
HPNS has two components, one resulting from the speed of compression and the other from the absolute pressure. The compression effects may occur when descending below at rates greater than a few metres per minute, but reduce within a few hours once the pressure has stabilised. The effects from depth become significant at depths exceeding and remain regardless of the time spent at that depth.
The susceptibility of divers and animals to HPNS varies over a wide range depending on the individual, but has little variation between different dives by the same diver.
High pressure nervous syndrome is rarely of importance to recreational divers. Breathing any gas at great depths (hundreds of feet) can cause seizures. Interestingly it was discovered because divers were using gas mixtures without nitrogen to be able to go to great depths without experiencing nitrogen narcosis. It turns out that nitrogen prevents HPNS. The answer? Add very small amounts of nitrogen to gas mixes when diving at great depth, small enough to avoid nitrogen narcosis, but sufficient to prevent HPNS.
Barotrauma is injury caused by pressure effects on gas spaces. This may occur during ascent or descent. The ears are the most commonly affected body part. The most serious injury is lung barotrauma, which can result in pneumothorax, pneumomediastinum, pneumopericardium, subcutaneous emphysema, and arterial gas embolism. All divers, commercial air travelers, people traveling overland between different altitudes, and people who work in pressurized environments have had to deal with some degree of barotrauma effect upon their ears, sinuses, and other air spaces. At the most extreme, barotrauma can cause ruptured eardrums, bleeding sinuses, exploding tooth cavities, and the lung injuries described above. This is the reason why divers follow a procedure of not holding their breath during ascent. By breathing continuously, they keep the airways open and avoid pressure differences between their lungs and ambient pressure.
In Belgium, the Conseil Supérieur de la Santé gives a scientific advisory report on public health policy, the Superior Health Council of Belgium provides an overview of products that are authorized in Belgium for consumer use and that contain caustic substances, as well as of the risks linked to exposure to these products. This report aims at suggesting protection measures for the consumers, and formulates recommendations that apply to the different stages of the chain, which begins with the formulation of the product, followed by its regulation / marketing / application and post-application and ends with its monitoring.
Respiratory alkalosis may be produced as a result of the following causes:
Obesity hypoventilation syndrome is associated with a reduced quality of life, and people with the condition incur increased healthcare costs, largely due to hospital admissions including observation and treatment on intensive care units. OHS often occurs together with several other disabling medical conditions, such as asthma (in 18–24%) and type 2 diabetes (in 30–32%). Its main complication of heart failure affects 21–32% of patients.
Those with abnormalities severe enough to warrant treatment have an increased risk of death reported to be 23% over 18 months and 46% over 50 months. This risk is reduced to less than 10% in those receiving treatment with PAP. Treatment also reduces the need for hospital admissions and reduces healthcare costs.
The exact prevalence of obesity hypoventilation syndrome is unknown, and it is thought that many people with symptoms of OHS have not been diagnosed. About a third of all people with morbid obesity (a body mass index exceeding 40 kg/m) have elevated carbon dioxide levels in the blood.
When examining groups of people with obstructive sleep apnea, researchers have found that 10–20% of them meet the criteria for OHS as well. The risk of OHS is much higher in those with more severe obesity, i.e. a body mass index (BMI) of 40 kg/m or higher. It is twice as common in men compared to women. The average age at diagnosis is 52. American Black people are more likely to be obese than American whites, and are therefore more likely to develop OHS, but obese Asians are more likely than people of other ethnicities to have OHS at a lower BMI as a result of physical characteristics.
It is anticipated that rates of OHS will rise as the prevalence of obesity rises. This may also explain why OHS is more commonly reported in the United States, where obesity is more common than in other countries.
The exact symptoms of a chemical burn depend on the chemical involved. Symptoms include itching, bleaching or darkening of skin, burning sensations, trouble breathing, coughing blood and/or tissue necrosis. Common sources of chemical burns include sulfuric acid (HSO), hydrochloric acid (HCl), sodium hydroxide (NaOH), lime (CaO), silver nitrate (AgNO), and hydrogen peroxide (HO). Effects depend on the substance; hydrogen peroxide removes a bleached layer of skin, while nitric acid causes a characteristic color change to yellow in the skin, and silver nitrate produces noticeable black stains. Chemical burns may occur through direct contact on body surfaces, including skin and eyes, via inhalation, and/or by ingestion. Lipophilic substances that diffuse efficiently in human tissue, e.g., hydrofluoric acid, sulfur mustard, and dimethyl sulfate, may not react immediately, but instead produce the burns and inflammation hours after the contact. Chemical fabrication, mining, medicine, and related professional fields are examples of occupations where chemical burns may occur. Hydrofluoric acid leaches into the bloodstream and reacts with calcium and magnesium, and the resulting salts can cause cardiac arrest after eating through skin.
Respiratory alkalosis is a medical condition in which increased respiration elevates the blood pH beyond the normal range (7.35–7.45) with a concurrent reduction in arterial levels of carbon dioxide. This condition is one of the four basic categories of disruption of acid–base homeostasis.
There are many industrial inhalants that are known to cause various types of bronchiolitis, including bronchiolitis obliterans.
Industrial workers who have presented with bronchiolitis:
- nylon-flock workers
- workers who spray prints onto textiles with polyamide-amine dyes
- battery workers who are exposed to thionyl chloride fumes
- workers at plants that use or manufacture flavorings, e.g. diacetyl butter-like flavoring
Bronchiolitis obliterans has many possible causes, including collagen vascular disease, transplant rejection in organ transplant patients, viral infection (respiratory syncytial virus, adenovirus, HIV, cytomegalovirus), Stevens-Johnson syndrome, Pneumocystis pneumonia, drug reaction, aspiration and complications of prematurity (bronchopulmonary dysplasia), and exposure to toxic fumes, including diacetyl, sulfur dioxide, nitrogen dioxide, ammonia, chlorine, thionyl chloride, methyl isocyanate, hydrogen fluoride, hydrogen bromide, hydrogen chloride, hydrogen sulfide, phosgene, polyamide-amine dyes, mustard gas and ozone. It can also be present in patients with rheumatoid arthritis. Certain orally administrated emergency medications, such as activated charcoal, have been known to cause it when aspirated. The ingestion of large doses of papaverine in the vegetable Sauropus androgynus has caused it. Additionally, the disorder may be idiopathic (without known cause).