Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Adenovirus can cause severe necrotizing pneumonia in which all or part of a lung has increased translucency radiographically, which is called Swyer-James Syndrome. Severe adenovirus pneumonia also may result in bronchiolitis obliterans, a subacute inflammatory process in which the small airways are replaced by scar tissue, resulting in a reduction in lung volume and lung compliance.
Numerous factors have been suggested and linked to a higher risk of acquiring the infection, inclusive of malnutrition, vitamin A deficiency, absence of breastfeeding during the early stages of life, environmental pollution and overcrowding.
Mortality caused by HPIVs in developed regions of the world remains rare. Where mortality has occurred, it is principally in the three core risk groups (very young, elderly and immuno-compromised). Long term changes can however be associated with airway remodelling and are believed to be a significant cause of morbidity. The exact associations between HPIVs and diseases such as chronic obstructive pulmonary disease (COPD) are still being investigated.
In developing regions of the world, the highest risk group in terms of mortality remains pre-school children. Mortality may be as a consequence of primary viral infection or secondary problems such as bacterial infection. Predispositions, such as malnutrition and other deficiencies may further elevate the chances of mortality associated with infection.
Overall, LRI's cause approximately 25–30% of total deaths in pre-school children in the developing world. HPIVs is believed to be associated with 10% of all LRI cases, thus remaining a significant cause of mortality.
Although epidemiologic characteristics of the adenoviruses vary by type, all are transmitted by direct contact, fecal-oral transmission, and occasionally waterborne transmission. Some types are capable of establishing persistent asymptomatic infections in tonsils, adenoids, and intestines of infected hosts, and shedding can occur for months or years. Some adenoviruses (e.g., serotypes 1, 2, 5, and 6) have been shown to be endemic in parts of the world where they have been studied, and infection is usually acquired during childhood. Other types cause sporadic infection and occasional outbreaks; for example, epidemic keratoconjunctivitis is associated with adenovirus serotypes 8, 19, and 37. Epidemics of febrile disease with conjunctivitis are associated with waterborne transmission of some adenovirus types, often centering on inadequately chlorinated swimming pools and small lakes. ARD is most often associated with adenovirus types 4 and 7 in the United States. Enteric adenoviruses 40 and 41 cause gastroenteritis, usually in children. For some adenovirus serotypes, the clinical spectrum of disease associated with infection varies depending on the site of infection; for example, infection with adenovirus 7 acquired by inhalation is associated with severe lower respiratory tract disease, whereas oral transmission of the virus typically causes no or mild disease. Outbreaks of adenovirus-associated respiratory disease have been more common in the late winter, spring, and early summer; however, adenovirus infections can occur throughout the year.
"Ad14 (for adenovirus serotype 14), has caused at least 140 illnesses in New York, Oregon, Texas and Washington, according to a report from the Centers for Disease Control and Prevention. The illness made headlines in Texas in September 2007, when a so-called "boot camp flu" sickened hundreds at Lackland Air Force Base in San Antonio. A 19-year-old trainee died."
Several adenoviruses, including Ad5, Ad9, Ad31, Ad36, Ad37, and SMAM1, have at least some evidence of causation of obesity in animals, adipogenesis in cells, and/or association with human obesity. To date, the most thorough investigations have been conducted for adenovirus serotype 36 (Adv36).
The best prevention against viral pneumonia is vaccination against influenza, adenovirus, chickenpox, herpes zoster, measles, and rubella.
Viral infections such as canine parainfluenza or canine coronavirus are only shed for roughly 1 week following recovery; however, respiratory infections involving "Bordetella bronchiseptica" can be transmissible for several weeks longer. While there was early evidence to suggest that "B. bronchiseptica" could be shed for many months post-infection, a more recent report places detectable nasal and pharyngeal levels of "B. bronchiseptica" in 45.6% of all clinically healthy dogs. This has potentially expanded the vector from currently or recently infected dogs to half the dog population as carriers. To put the relative levels of shedding bacteria into perspective, a study analyzing the shedding kinetics of "B. bronchiseptica" presents the highest levels of bacterial shedding one week post-exposure, with an order of magnitude decrease in shedding observed every week. This projection places negligible levels of shedding to be expected 6 weeks post-exposure (or ~5 weeks post-onset of symptoms). Dogs which had been administered intranasal vaccine 4 weeks prior to virulent "B. bronchiseptica" challenge displayed little to no bacterial shedding within 3 weeks of exposure to the virulent strain.
Common causes of viral pneumonia are:
- "Influenza virus" A and B
- "Respiratory syncytial virus" (RSV)
- "Human parainfluenza viruses" (in children)
Rarer viruses that commonly result in pneumonia include:
- "Adenoviruses" (in military recruits)
- "Metapneumovirus"
- "Severe acute respiratory syndrome virus" (SARS coronavirus)
- "Middle East respiratory syndrome virus" (MERS coronavirus)
Viruses that primarily cause other diseases, but sometimes cause pneumonia include:
- "Herpes simplex virus" (HSV), mainly in newborns or young children
- "Varicella-zoster virus" (VZV)
- "Measles virus"
- "Rubella virus"
- "Cytomegalovirus" (CMV), mainly in people with immune system problems
- "Smallpox virus"
- "dengue virus"
The most commonly identified agents in children are "respiratory syncytial virus", "rhinovirus", "human metapneumovirus", "human bocavirus", and "parainfluenza viruses".
Dogs will typically recover from kennel cough within a few weeks. However, secondary infections could lead to complications that could do more harm than the disease itself. Several opportunistic invaders have been recovered from the respiratory tracts of dogs with kennel cough, including Streptococcus, Pasteurella, Pseudomonas, and various coliforms. These bacteria have the potential to cause pneumonia or sepsis, which drastically increase the severity of the disease. These complications are evident in thoracic radiographic examinations. Findings will be mild in animals affected only by kennel cough, while those with complications may have evidence of segmental atelectasis and other severe side effects.
Infectious diseases causing ILI include malaria, acute HIV/AIDS infection, herpes, hepatitis C, Lyme disease, rabies, myocarditis, Q fever, dengue fever, poliomyelitis, pneumonia, measles, and many others.
Pharmaceutical drugs that may cause ILI include many biologics such as interferons and monoclonal antibodies. Chemotherapeutic agents also commonly cause flu-like symptoms. Other drugs associated with a flu-like syndrome include bisphosphonates, caspofungin, and levamisole. A flu-like syndrome can also be caused by an influenza vaccine or other vaccines, and by opioid withdrawal in addicts.
Vaccination helps prevent bronchopneumonia, mostly against influenza viruses, adenoviruses, measles, rubella, streptococcus pneumoniae, haemophilus influenzae, diphtheria, bacillus anthracis, chickenpox, and bordetella pertussis.
There is no vaccine for SARS to date. Isolation and quarantine remain the most effective means to prevent the spread of SARS. Other preventative measures include:
- Handwashing
- Disinfection of surfaces for fomites
- Wearing a surgical mask
- Avoiding contact with bodily fluids
- Washing the personal items of someone with SARS in hot, soapy water (eating utensils, dishes, bedding, etc.)
- Keeping children with symptoms home from school
Many public health interventions were taken to help control the spread of the disease; which is mainly spread through respiratory droplets in the air. These interventions included earlier detection of the disease, isolation of people who are infected, droplet and contact precautions, and the use of personal protective equipment (PPE); including masks and isolation gowns. A screening process was also put in place at airports to monitor air travel to and from affected countries. Although no cases have been identified since 2004, the CDC is still working to make federal and local rapid response guidelines and recommendations in the event of a reappearance of the virus.
Influenza-like illness is a nonspecific respiratory illness characterized by fever, fatigue, cough, and other symptoms that stop within a few days. Most cases of ILI are caused not by influenza but by other viruses (e.g., rhinoviruses, coronaviruses, human respiratory syncytial virus, adenoviruses, and human parainfluenza viruses). Less common causes of ILI include bacteria such as "Legionella", "Chlamydia pneumoniae", "Mycoplasma pneumoniae", and "Streptococcus pneumoniae". Influenza, RSV, and certain bacterial infections are particularly important causes of ILI because these infections can lead to serious complications requiring hospitalization. Physicians who examine persons with ILI can use a combination of epidemiologic and clinical data (information about recent other patients and the individual patient) and, if necessary, laboratory and radiographic tests to determine the cause of the ILI.
During the 2009 flu pandemic, many thousands of cases of ILI were reported in the media as suspected swine flu. Most were false alarms. A differential diagnosis of "probable" swine flu requires not only symptoms but also a high likelihood of swine flu due to the person's recent history. During the 2009 flu pandemic in the United States, the CDC advised physicians to "consider swine influenza infection in the differential diagnosis of patients with acute febrile respiratory illness who have either been in contact with persons with confirmed swine flu, or who were in one of the five U.S. states that have reported swine flu cases or in Mexico during the 7 days preceding their illness onset." A diagnosis of "confirmed" swine flu required laboratory testing of a respiratory sample (a simple nose and throat swab).
Lower respiratory infectious disease is the fifth-leading cause of death and the combined leading infectious cause of death, being responsible for 2·74 million deaths worldwide. This is generally similar to estimates in the 2010 Global Burden of Disease study.
This total only accounts for "Streptococcus pneumoniae" and "Haemophilus Influenzae" infections and does not account for atypical or nosocomial causes of lower respiratory disease, therefore underestimating total disease burden.
As of March 2020, it was unknown if past infection provides effective and long-term immunity in people who recover from the disease. Immunity is seen as likely, based on the behaviour of other coronaviruses, but cases in which recovery from COVID-19 have been followed by positive tests for coronavirus at a later date have been reported. These cases are believed to be worsening of a lingering infection rather than re-infection.
Avian infectious bronchitis (IB) is an acute and highly contagious respiratory disease of chickens. The disease is caused by avian infectious bronchitis virus (IBV), a coronavirus, and characterized by respiratory signs including gasping, coughing, sneezing, tracheal rales, and nasal discharge. In young chickens, severe respiratory distress may occur. In layers, respiratory distress, nephritis, decrease in egg production, and loss of internal (watery egg white) and external (fragile, soft, irregular or rough shells, shell-less) egg quality are reported.
Several consequent reports from China on some recovered SARS patients showed severe long-time sequelae exist. The most typical diseases include, among other things, pulmonary fibrosis, osteoporosis, and femoral necrosis, which have led to the complete loss of working ability or even self-care ability of these cases. As a result of quarantine procedures, some of the post-SARS patients have been documented suffering from posttraumatic stress disorder (PTSD) and major depressive disorder.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the virus strain that causes coronavirus disease 2019 (COVID-19), a respiratory illness. It is colloquially known as the coronavirus, and was previously referred to by its provisional name 2019 novel coronavirus (2019-nCoV). SARS-CoV-2 is a positive-sense single-stranded RNA virus. It is contagious in humans, and the World Health Organization (WHO) has designated the ongoing pandemic of COVID-19 a Public Health Emergency of International Concern. Because the strain was first discovered in Wuhan, China, it is sometimes referred to as "Wuhan virus" or "Wuhan coronavirus". Since the WHO discourages the use of names based on locations such as MERS, and to avoid confusion with the disease SARS, it sometimes refers to SARS-CoV-2 as "the COVID-19 virus" in public health communications. The general public frequently calls both SARS-CoV-2 and the disease it causes "coronavirus", but scientists typically use more precise terminology.
Taxonomically, SARS-CoV-2 is a strain of Severe acute respiratory syndrome-related coronavirus (SARSr-CoV). It is believed to have zoonotic origins and has close genetic similarity to bat coronaviruses, suggesting it emerged from a bat-borne virus. An intermediate animal reservoir such as a pangolin is also thought to be involved in its introduction to humans. The virus shows little genetic diversity, indicating that the spillover event introducing SARS-CoV-2 to humans is likely to have occurred in late 2019.
Epidemiological studies estimate each infection results in 1.4 to 3.9 new ones when no members of the community are immune and no preventive measures taken. The virus is primarily spread between people through close contact and via respiratory droplets produced from coughs or sneezes. It mainly enters human cells by binding to the receptor angiotensin converting enzyme 2 (ACE2).
The mortality rate of the virus largely depends on the immune status of the infected dogs. Puppies experience the highest mortality rate, where complications such as pneumonia and encephalitis are more common. In older dogs that develop distemper encephalomyelitis, vestibular disease may present. Around 15% of canine inflammatory central nervous system diseases are a result of CDV.
No specific treatment is available, but antibiotics can be used to prevent secondary infections.
Vaccines are available (ATCvet codes: for the inactivated vaccine, for the live vaccine; plus various combinations).
Biosecurity protocols including adequate isolation, disinfection are important in controlling the spread of the disease.
Human-to-human transmission of SARS-CoV-2 has been confirmed during the 2019–20 coronavirus pandemic. Transmission occurs primarily via respiratory droplets from coughs and sneezes within a range of about 1.8 metres (6 ft). Indirect contact via contaminated surfaces is another possible cause of infection. Preliminary research indicates that the virus may remain viable on plastic and steel for up to three days, but does not survive on cardboard for more than one day or on copper for more than four hours; the virus is inactivated by soap, which destabilises its lipid bilayer. Viral RNA has also been found in stool samples from infected individuals.
The degree to which the virus is infectious during the incubation period is uncertain, but research has indicated that the pharynx reaches peak viral load approximately four days after infection. On 1 February 2020, the World Health Organization (WHO) indicated that "transmission from asymptomatic cases is likely not a major driver of transmission". However, an epidemiological model of the beginning of the outbreak in China suggested that "pre-symptomatic shedding may be typical among documented infections" and that subclinical infections may have been the source of a majority of infections.
There is some evidence of human-to-animal transmission of SARS-CoV-2, including examples in felids. Some institutions have advised those infected with SARS-CoV-2 to restrict contact with animals.
The impact of the pandemic and its mortality rate are different for men and women. Mortality is higher in men in studies conducted in China and Italy. The highest risk for men is in their 50s, with the gap between men and women closing only at 90. In China, the death rate was 2.8 percent for men and 1.7 percent for women. The exact reasons for this sex-difference is not known, but genetic and behavioural factors could be a reason. Sex-based immunological differences, lesser prevalence of smoking in women and men developing co-morbid conditions such as hypertension at a younger age than women could have contributed to the higher mortality in men. In Europe, 57% of the infected individuals were men and 72% of those died with COVID-19 were men. As of April 2020, the US government is not tracking sex-related data of COVID-19 infections. Research has shown that viral illnesses like Ebola, HIV, influenza and SARS affect men and women differently. A higher percentage of health workers, particularly nurses, are women, and they have a higher chance of being exposed to the virus. School closures, lockdowns and reduced access to healthcare following the 2019–20 coronavirus pandemic may deferentially affect the genders and possibly exaggerate existing gender disparity.
Bronchiolitis typically affects infants and children younger than two years, principally during the fall and winter . Bronchiolitis hospitalization has a peak incidence between two and six months of age and remains a significant cause of respiratory disease during the first two years of life. It is a leading cause of hospitalization in infants and young children.
Cat flu is the common name for a feline upper respiratory tract disease. While feline upper respiratory disease can be caused by several different pathogens, there are few symptoms that they have in common.
While Avian Flu can also infect cats, Cat flu is generally a misnomer, since it usually does not refer to an infection by an influenza virus. Instead, it is a syndrome, a term referring to the fact that patients display a number of symptoms that can be caused by one or more of the following infectious agents (pathogens):
1. Feline herpes virus causing feline viral rhinotracheitis (cat common cold, this is the disease that is closely similar to cat flu)
2. Feline calicivirus—(cat respiratory disease)
3. "Bordetella bronchiseptica"—(cat kennel cough)
4. "Chlamydophila felis"—(chlamydia)
In South Africa the term cat flu is also used to refer to Canine Parvo Virus. This is misleading, as transmission of the Canine Parvo Virus rarely involves cats.
Most household disinfectants will inactivate FHV-1. The virus can survive up to 18 hours in a damp environment, but less in a dry environment and only shortly as an aerosol.
Distemper is caused by a single-stranded RNA virus of the family "Paramyxoviridae", which is a close relative of the viruses that cause measles in humans and rinderpest in animals.