Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Although essential tremor is often mild, people with severe tremor have difficulty performing many of their routine activities of daily living. ET is generally progressive in most cases (sometimes rapidly, sometimes very slowly), and can be disabling in severe cases.
Risk factors for Holmes tremor include excess exposure to heavy metals, such as mercury and lead, as well as an increased intake of various drugs and toxins. Researchers found that raising the dose of antidepressants or neuroleptics elevate the risk for developing Holmes tremor. Increasing intake of coffee, tea, or other stimulants can also cause for greater risk of development. Tremors depend on dosage and amount of exposure to these factors and will typically decrease dramatically if the intake is reduced. Hyperthyroidism and hyperglycemia also increase the likelihood of developing Holmes tremor.
Similar to the causes of most tremors, Holmes tremor is triggered by lesion damage to a circuit controlling a physiological task such as precision movements, motor learning, the control of muscle groups, etc. Holmes tremor specifically occurs as a delayed reaction to lesion damage of the dopaminergic and cerebellothalamic systems. The most common cause of this lesion damage is brainstem stroke and trauma. The lesion damage to the dopamine pathways is associated with the neurological signs and symptoms.
ET is one of the most common neurological diseases, with a prevalence of approximately 4% in persons age 40 and older and considerably higher among persons in their 60s, 70s, 80s, with an estimated 20% of individuals in their 90s and over. Aside from enhanced physiological tremor, it is the most common type of tremor and one of the most commonly observed movement disorders.
Intention tremors are common among individuals with multiple sclerosis (MS). One common symptom of multiple sclerosis is ataxia, a lack of coordinated muscle movement caused by cerebellar lesions characteristic of multiple sclerosis. The disease often destroys physical and cognitive function of individuals.
Intention tremors can be a first sign of multiple sclerosis, since loss or deterioration of motor function and sensitivity are often one of the first symptoms of cerebellar lesions.
Intention tremors have a variety of other recorded causes as well. These include a variety of neurological disorders, such as stroke, alcoholism, alcohol withdrawal, peripheral neuropathy, Wilson's disease, Creutzfeldt–Jakob disease, Guillain–Barré syndrome and fragile X syndrome, as well as brain tumors, low blood sugar, hyperthyroidism, hypoparathyroidism, insulinoma, normal aging, and traumatic brain injury. Holmes tremor, a rubral or midbrain tremor, is another form of tremor that includes intention tremors, among other symptoms. This disease affects the proximal muscles of the head, shoulders, and neck. Tremors of this disease occur at frequencies of 2–4 Hz or more.
Intention tremor is also known to be associated with infections, West Nile virus, rubella, H. influenza, rabies, and varicella. A variety of poisons have been shown to cause intention tremor, including mercury, methyl bromide, and phosphine. In addition, vitamin deficiencies have been linked to intention tremor, especially deficiency in vitamin E. Pharmacological agents such as anti-arrhythmic drugs, anti-epileptic agents, benzodiazepine, cyclosporine, lithium, neuroleptics, and stimulants have been known to cause intention tremor. Some ordinary activities including ingesting too much caffeine, cigarettes, and alcohol, along with stress, anxiety, fear, anger and fatigue
have also been shown to cause intention tremor by negatively affecting the cerebellum, brainstem, or thalamus, as discussed in mechanisms.
Two other types, primary ciliary dyskinesia and biliary dyskinesia, are caused by specific kinds of ineffective movement of the body, and are not movement disorders.
Spastic thrusting of hip area can occur in Sodemytopic Parkinson's.
When other conditions lead to spasmodic torticollis, it is said that the spasmodic torticollis is secondary. A variety of conditions can cause brain injury, from external factors to diseases. These conditions are listed below:
- Perinatal (during birth) cerebral injury
- Kernicterus
- Cerebrovascular diseases
- Drug induced
- Central nervous system tumor
- Peripheral or central trauma
- Infectious or post infectious encephalopathies
- Toxins
- Metabolic
- Paraneoplastic syndromes
- Central pontine myelinolysis
Secondary spasmodic torticollis is diagnosed when any of the following are present: history of exogenous insult or exposure, neurological abnormalities other than dystonia, abnormalities on brain imaging, particularly in the basal ganglia.
Spasmodic torticollis is one of the most common forms of dystonia seen in neurology clinics, occurring in approximately 0.390% of the United States population in 2007 (390 per 100,000). Worldwide, it has been reported that the incidence rate of spasmodic torticollis is at least 1.2 per 100,000 person years, and a prevalence rate of 57 per 1 million.
The exact prevalence of the disorder is not known; several family and population studies show that as many as 25% of cervical dystonia patients have relatives that are undiagnosed. Studies have shown that spasmodic torticollis is not diagnosed immediately; many patients are diagnosed well after a year of seeking medical attention. A survey of 59 patients diagnosed with spasmodic torticollis show that 43% of the patients visited at least four physicians before the diagnosis was made.
There is a higher prevalence of spasmodic torticollis in females; females are 1.5 times more likely to develop spasmodic torticollis than males. The prevalence rate of spasmodic torticollis also increases with age, most patients show symptoms from ages 50–69. The average onset age of spasmodic torticollis is 41.
Tremor can be a symptom associated with disorders in those parts of the brain that control muscles throughout the body or in particular areas, such as the hands. Neurological disorders or conditions that can produce tremor include multiple sclerosis, stroke, traumatic brain injury, chronic kidney disease and a number of neurodegenerative diseases that damage or destroy parts of the brainstem or the cerebellum, Parkinson's disease being the one most often associated with tremor. Other causes include the use of drugs (such as amphetamines, cocaine, caffeine, corticosteroids, SSRIs) or alcohol, mercury poisoning, or the withdrawal of drugs such as alcohol or benzodiazepine. Tremors can also be seen in infants with phenylketonuria (PKU), overactive thyroid or liver failure. Tremors can be an indication of hypoglycemia, along with palpitations, sweating and anxiety.
Tremor can also be caused from lack of sleep, lack of vitamins, or increased stress. Deficiencies of magnesium and thiamine have also been known to cause tremor or shaking, which resolves when the deficiency is corrected. See magnesium in biology. Some forms of tremor are inherited and run in families, while others have no known cause. Tremors can also be caused by some spider bites, e.g. the redback spider of Australia.
Characteristics may include a rhythmic shaking in the hands, arms, head, legs, or trunk; shaky voice; and problems holding things such as a fork or pen. Some tremors may be triggered by or become exacerbated during times of stress or strong emotion, when the individual is physically exhausted, or during certain postures or movements.
Tremor may occur at any age but is most common in middle-age and older persons. It may be occasional, temporary, or occur intermittently. Tremor affects men and women equally.
Intention tremor, also known as cerebellar tremor, is a dyskinetic disorder characterized by a broad, coarse, and low frequency (below 5 Hz) tremor. The amplitude of an intention tremor increases as an extremity approaches the endpoint of deliberate and visually guided movement (hence the name intention tremor). An intention tremor is usually perpendicular to the direction of movement. When experiencing an intention tremor, one often overshoots or undershoots their target, a condition known as dysmetria. Intention tremor is the result of dysfunction of the cerebellum, particularly on the same side as the tremor in the lateral zone, which controls visually guided movements. Depending on the location of cerebellar damage, these tremors can be either unilateral or bilateral.
A variety of causes have been discovered to date, including damage or degradation of the cerebellum due to neurodegenerative diseases, trauma, tumor, stroke, or toxicity. There is currently no established pharmacological treatment; however, some success has been seen using treatments designed for essential tremors.
Hyperkinesia, also known as hyperkinesis, refers to an increase in muscular activity that can result in excessive abnormal movements, excessive normal movements, or a combination of both. The word hyperkinesis comes from the Greek "hyper", meaning "increased," and "kinein", meaning "to move." Hyperkinesia is a state of excessive restlessness which is featured in a large variety of disorders that affect the ability to control motor movement, such as Huntington's disease. It is the opposite of hypokinesia, which refers to decreased bodily movement, as commonly manifested in Parkinson's disease. Many hyperkinetic movements are the result of improper regulation of the basal ganglia-thalamocortical circuitry. Overactivity of a direct pathway combined with decreased activity of an indirect pathway results in activation of thalamic neurons and excitation of cortical neurons, resulting in increased motor output. Often, hyperkinesia is paired with hypotonia, a decrease in muscle tone. Many hyperkinetic disorders are psychological in nature and are typically prominent in childhood. Depending on the specific type of hyperkinetic movement, there are different treatment options available to minimize the symptoms, including different medical and surgical therapies.
Parkinson's Disease is one of the most commonly known motor disorders. It is a disorder that slowly and progressively affects and alters movement, control and coordination of muscles, and balance. This disease is caused by cells being destroyed in the part of the brainstem called the substantia nigra. This is the part of the brain that controls coordination and movement ("Movement Disorders"). Symptoms of Parkinson’s disease include tremors, gait problems and spasms. One in five hundred people will have Parkinson’s disease. Being exposed to certain drugs or toxins that cause genetic mutation is the usual cause of Parkinson’s disease (Mandal). The treatments of Parkinson’s disease include medication and in some cases surgery. Medications commonly used as treatment are anticholinergics and dopamine enhancing drugs. Surgery is usually only considered when medication has been unsuccessful (“Movement Disorders”).
Tremor is most commonly classified by clinical features and cause or origin. Some of the better known forms of tremor, with their symptoms, include the following:
- Cerebellar tremor (also known as intention tremor) is a slow, broad tremor of the extremities that occurs at the end of a purposeful movement, such as trying to press a button or touching a finger to the tip of one’s nose. Cerebellar tremor is caused by lesions in or damage to the cerebellum resulting from stroke, tumor, or disease such as multiple sclerosis or some inherited degenerative disorder. It can also result from chronic alcoholism or overuse of some medicines. In classic cerebellar tremor, a lesion on one side of the brain produces a tremor in that same side of the body that worsens with directed movement. Cerebellar damage can also produce a “wing-beating” type of tremor called rubral or Holmes’ tremor — a combination of rest, action, and postural tremors. The tremor is often most prominent when the affected person is active or is maintaining a particular posture. Cerebellar tremor may be accompanied by other manifestations of ataxia, including dysarthria (speech problems), nystagmus (rapid, involuntary rolling of the eyes), gait problems and postural tremor of the trunk and neck. "Titubation" is tremor of the head and is of cerebellar origin.
- Dystonic tremor occurs in individuals of all ages who are affected by dystonia, a movement disorder in which sustained involuntary muscle contractions cause twisting and repetitive motions and/or painful and abnormal postures or positions. Dystonic tremor may affect any muscle in the body and is seen most often when the patient is in a certain position or moves a certain way. The pattern of dystonic tremor may differ from essential tremor. Dystonic tremors occur irregularly and often can be relieved by complete rest. Touching the affected body part or muscle may reduce tremor severity (a geste antagoniste). The tremor may be the initial sign of dystonia localized to a particular part of the body.
- Essential tremor (sometimes called benign essential tremor) is the most common of the more than 20 types of tremor. Although the tremor may be mild and nonprogressive in some people, in others, the tremor is slowly progressive, starting on one side of the body but affecting both sides within 3 years. The hands are most often affected but the head, voice, tongue, legs, and trunk may also be involved. Head tremor may be seen as a vertical or horizontal motion. Essential tremor may be accompanied by mild gait disturbance. Tremor frequency may decrease as the person ages, but the severity may increase, affecting the person’s ability to perform certain tasks or activities of daily living. Heightened emotion, stress, fever, physical exhaustion, or low blood sugar may trigger tremors or increase their severity. Onset is most common after age 40, although symptoms can appear at any age. It may occur in more than one family member. Children of a parent who has essential tremor have a 50 percent chance of inheriting the condition. Essential tremor is not associated with any known pathology.
- Orthostatic tremor is characterized by fast (>12 Hz) rhythmic muscle contractions that occur in the legs and trunk immediately after standing. Cramps are felt in the thighs and legs and the patient may shake uncontrollably when asked to stand in one spot. No other clinical signs or symptoms are present and the shaking ceases when the patient sits or is lifted off the ground. The high frequency of the tremor often makes the tremor look like rippling of leg muscles while standing. Orthostatic tremor may also occur in patients who have essential tremor, and there might be an overlap between these categories of tremor.
- Parkinsonian tremor is caused by damage to structures within the brain that control movement. This resting tremor, which can occur as an isolated symptom or be seen in other disorders, is often a precursor to Parkinson's disease (more than 25 percent of patients with Parkinson’s disease have an associated action tremor). The tremor, which is classically seen as a "pill-rolling" action of the hands that may also affect the chin, lips, legs, and trunk, can be markedly increased by stress or emotion. Onset is generally after age 60. Movement starts in one limb or on one side of the body and usually progresses to include the other side.
- Physiological tremor occurs in every normal individual and has no clinical significance. It is rarely visible and may be heightened by strong emotion (such as anxiety or fear), physical exhaustion, hypoglycemia, hyperthyroidism, heavy metal poisoning, stimulants, alcohol withdrawal or fever. It can be seen in all voluntary muscle groups and can be detected by extending the arms and placing a piece of paper on top of the hands. Enhanced physiological tremor is a strengthening of physiological tremor to more visible levels. It is generally not caused by a neurological disease but by reaction to certain drugs, alcohol withdrawal, or medical conditions including an overactive thyroid and hypoglycemia. It is usually reversible once the cause is corrected. This tremor classically has a frequency of about 10 Hz
- tremor (also called hysterical tremor) can occur at rest or during postural or kinetic movement. The characteristics of this kind of tremor may vary but generally include sudden onset and remission, increased incidence with stress, change in tremor direction and/or body part affected, and greatly decreased or disappearing tremor activity when the patient is distracted. Many patients with psychogenic tremor have a conversion disorder (see Posttraumatic stress disorder) or another psychiatric disease.
- Rubral tremor is characterized by coarse slow tremor which is present at rest, at posture and with intention. This tremor is associated with conditions which affect the red nucleus in the midbrain, classically unusual strokes.
Tremor can result from other conditions as well
- Alcoholism, excessive alcohol consumption, or alcohol withdrawal can kill certain nerve cells, resulting in a tremor known as asterixis. Conversely, small amounts of alcohol may help to decrease familial and essential tremor, but the mechanism behind it is unknown. Alcohol potentiates GABAergic transmission and might act at the level of the inferior olive.
- Tremor in peripheral neuropathy may occur when the nerves that supply the body’s muscles are traumatized by injury, disease, abnormality in the central nervous system, or as the result of systemic illnesses. Peripheral neuropathy can affect the whole body or certain areas, such as the hands, and may be progressive. Resulting sensory loss may be seen as a tremor or ataxia (inability to coordinate voluntary muscle movement) of the affected limbs and problems with gait and balance. Clinical characteristics may be similar to those seen in patients with essential tremor.
- Tobacco withdrawal symptoms include tremor.
- Most of the symptoms can also occur randomly when panicked.
Ataxia is a motor disorder that affects the spinal cord, brain and brainstem. Symptoms of ataxia include tremors, lack of coordination, loss of balance, instability, inaccuracy, clumsiness, gait problems, speech problems, and involuntary eye movements. Medication is the main treatment of ataxia. Some of these medicines include selegiline, amantadine, entacapone, dopamine agonists, and anticholinergics (“Movement Disorders”).
Late-onset dyskinesia, also known as tardive dyskinesia, occurs after long-term treatment with an antipsychotic drug such as haloperidol (Haldol) or amoxapine (Asendin). The symptoms include tremors and writhing movements of the body and limbs, and abnormal movements in the face, mouth, and tongue including involuntary lip smacking, repetitive pouting of the lips, and tongue protrusions.
Rabbit syndrome is another type of chronic dyskinesia, while orofacial dyskinesia may be related to persistent replication of Herpes simplex virus type 1.
The medical treatment of essential tremor at the Movement Disorders Clinic at Baylor College of Medicine begins with minimizing stress and tremorgenic drugs along with recommending a restricted intake of beverages containing caffeine as a precaution, although caffeine has not been shown to significantly intensify the presentation of essential tremor. Alcohol amounting to a blood concentration of only 0.3% has been shown to reduce the amplitude of essential tremor in two-thirds of patients; for this reason it may be used as a prophylactic treatment before events during which one would be embarrassed by the tremor presenting itself. Using alcohol regularly and/or in excess to treat tremors is highly unadvisable, as there is a purported correlation between tremor and alcoholism. Alcohol is thought to stabilize neuronal membranes via potentiation of GABA receptor-mediated chloride influx. It has been demonstrated in essential tremor animal models that the food additive 1-octanol suppresses tremors induced by harmaline, and decreases the amplitude of essential tremor for about 90 minutes.
Two of the most valuable drug treatments for essential tremor are propranolol, a beta blocker, and primidone, an anticonvulsant. Propranolol is much more effective for hand tremor than head and voice tremor. Some beta-adrenergic blockers (beta blockers) are not lipid-soluble and therefore cannot cross the blood–brain barrier (propranolol being an exception), but can still act against tremors; this indicates that this drug’s mechanism of therapy may be influenced by peripheral beta-adrenergic receptors. Primidone’s mechanism of tremor prevention has been shown significantly in controlled clinical studies. The benzodiazepine drugs such as diazepam and barbiturates have been shown to reduce presentation of several types of tremor, including the essential variety. Controlled clinical trials of gabapentin yielded mixed results in efficacy against essential tremor while topiramate was shown to be effective in a larger double-blind controlled study, resulting in both lower Fahn-Tolosa-Marin tremor scale ratings and better function and disability as compared to placebo.
It has been shown in two double-blind controlled studies that injection of botulinum toxin into muscles used to produce oscillatory movements of essential tremors, such as forearm, wrist and finger flexors, may decrease the amplitude of hand tremor for approximately three months and that injections of the toxin may reduce essential tremor presenting in the head and voice. The toxin also may help tremor causing difficulty in writing, although properly adapted writing devices may be more efficient. Due to high incidence of side effects, use of botulinum toxin has only received a C level of support from the scientific community.
Deep brain stimulation toward the ventral intermediate nucleus of the thalamus and potentially the subthalamic nucleus and caudal zona incerta nucleus have been shown to reduce tremor in numerous studies. That toward the ventral intermediate nucleus of the thalamus has been shown to reduce contralateral and some ipsilateral tremor along with tremors of the cerebellar outflow, head, resting state and those related to hand tasks; however, the treatment has been shown to induce difficulty articulating thoughts (dysarthria), and loss of coordination and balance in long-term studies. Motor cortex stimulation is another option shown to be viable in numerous clinical trials.
Extrapyramidal symptoms are most commonly caused by typical antipsychotic drugs that antagonize dopamine D2 receptors. The most common typical antipsychotics associated with EPS are haloperidol and fluphenazine. Atypical antipsychotics have lower D2 receptor affinity or higher serotonin 5-HT2A receptor affinity which lead to lower rates of EPS. However, some research has shown that atypical antipsychotics are just as likely as conventional antipsychotics to cause EPS.
Other anti-dopaminergic drugs, like the antiemetic metoclopramide, can also result in extrapyramidal side effects. Short and long-term use of antidepressants such as selective serotonin reuptake inhibitors (SSRI), serotonin-norepinephrine reuptake inhibitors (SNRI), and norepinephrine-dopamine reuptake inhibitors (NDRI) have also resulted in EPS. Specifically, duloxetine, sertraline, escitalopram, fluoxetine, and bupropion have been linked to the induction of EPS. Other causes of extrapyramidal symptoms can include brain damage and meningitis.
Anticholinergic drugs are used to control neuroleptic-induced EPS, although akathisia may require beta blockers or even benzodiazepines. If the EPS are induced by an antipsychotic, EPS may be reduced by dose titration or by switching to an atypical antipsychotic, such as aripiprazole, ziprasidone, quetiapine, olanzapine, risperidone, or clozapine. These medications possess an additional mode of action that is believed to negate their effect on the nigrostriatal pathway, which means they are associated with fewer extrapyramidal side-effects than "conventional" antipsychotics (chlorpromazine, haloperidol, etc.), although some research has shown that second generation neuroleptics cause EPS at the same rate as the first generation drugs.
Commonly used medications for EPS are anticholinergic agents such as benztropine (Cogentin), diphenhydramine (Benadryl), and trihexyphenidyl (Artane). Another common course of treatment includes dopamine agonist agents such as pramipexole. These medications reverse the symptoms of extrapyramidal side effects caused by antipsychotics or other drugs that either directly or indirectly inhibit dopaminergic neurotransmission.
Studies are yet to be undertaken on the optimum dosage of the causative drugs to reduce their side effects (extrapyramidal symptoms (EPS)).
Hypokinesia refers to decreased bodily movement. One of the two categories of movement disorders, hypokinesia is characterized by a partial or complete loss of muscle movement due to a disruption in the basal ganglia. Patients with hypokinetic disorders like Parkinson's disease experience muscle rigidity and an inability to produce movement. It is also associated with mental health disorders and prolonged inactivity due to illness, amongst other diseases.
The other category of movement disorder resulting from damage to the basal ganglia, hyperkinesia, features an exaggeration of unwanted motion, like twitching or writhing in Huntington's disease or Tourette syndrome.
Usually there are brief, arrhythmic interruptions of sustained voluntary muscle contraction causing brief lapses of posture, with a frequency of 3–5 Hz. It is bilateral, but may be asymmetric. Unilateral asterixis may occur with structural brain disease.
- It can be a sign of hepatic encephalopathy, damage to brain cells presumably due to the inability of the liver to metabolize ammonia to urea. The cause is thought to be predominantly related to abnormal ammonia metabolism.
- Asterixis is seen most often in drowsy or stuporous patients with metabolic encephalopathies, especially in decompensated cirrhosis or acute liver failure.
- It is also seen in some patients with kidney failure and azotemia, and in carbon dioxide toxicity.
- It can also be a feature of Wilson's disease.
- Asterixis is also seen in respiratory failure.
- Some drugs are known to cause asterixis, particularly phenytoin (when it is known as phenytoin flap). Other drugs implicated include benzodiazepines, barbiturates, valproate, gabapentin, lithium, ceftazidime, and metoclopramide.
Treatment of Ramsay Hunt Syndrome Type 1 is specific to individual symptoms. Myoclonus and seizures may be treated with drugs like valproate.
Some have described this condition as difficult to characterize.
Though it is often most associated with Parkinson's disease, hypokinesia can be present in a wide variety of other conditions.
Differentiating some kinds of atypical Parkinson: Northwest Parkinson Foundation
Before Parkinson's disease is diagnosed, the differential diagnoses include:
- AIDS can sometimes lead to the symptoms of secondary parkinsonism, due to commonly causing dopaminergic dysfunction. Indeed, parkinsonism can be a presenting feature of HIV infection.
- Corticobasal degeneration
- Creutzfeldt–Jakob disease
- Dementia pugilistica or "boxer's dementia" is a condition that occurs in athletes due to chronic brain trauma.
- Diffuse Lewy body disease
- Drug-induced parkinsonism ("pseudoparkinsonism") due to drugs such as antipsychotics, metoclopramide, sertraline, fluoxetine or the toxin MPTP
- Encephalitis lethargica
- Essential tremor, an illness which has some diagnostic overlap with Parkinson's disease
- Orthostatic tremor
- MDMA addiction and frequent use has been linked to Parkonsonism. Several cases have been reported where individuals are diagnosed with the syndrome after taking MDMA.
- Multiple system atrophy
- Pantothenate kinase-associated neurodegeneration, also known as neurodegeneration with brain iron accumulation or Hallervorden-Spatz syndrome
- Parkinson plus syndrome
- Progressive supranuclear palsy
- Toxicity due to substances such as carbon monoxide, carbon disulfide, manganese, paraquat, mercury, hexane, rotenone, Annonaceae, and toluene (inhalant abuse: "huffing")
- Vascular parkinsonism, associated with underlying cerebrovascular disease
- Wilson's disease is a genetic disorder in which an abnormal accumulation of copper occurs. The excess copper can lead to the formation of a copper-dopamine complex, which leads to the oxidation of dopamine to aminochrome. The most common manifestations include bradykinesia, cogwheel rigidity and a lack of balance.
- Paraneoplastic syndrome: neurological symptoms caused by antibodies associated with cancers
- Genetic
- Rapid onset dystonia parkinsonism
- Parkin mutation
- X-linked dystonia parkinsonism
- Autosomal recessive juvenile parkinsonism
Dysdiadochokinesia is a feature of cerebellar ataxia and may be the result of lesions to either the cerebellar hemispheres or the frontal lobe (of the cerebrum), it can also be a combination of both. It is thought to be caused by the inability to switch on and switch off antagonising muscle groups in a coordinated fashion due to hypotonia, secondary to the central lesion.
Dysdiadochokinesia is also seen in Friedreich's ataxia and multiple sclerosis, as a cerebellar symptom (including ataxia, intention tremor and dysarthria). It is also a feature of ataxic dysarthria. Dysdiadochokinesia often presents in motor speech disorders (dysarthria), therefore testing for dysdiadochokinesia can be used for a differential diagnosis.
Dysdiadochokinesia has been linked to a mutation in "SLC18A2", which encodes vesicular monoamine transporter 2 (VMAT2).
RHS type 1 is caused by the impairment of a regulatory mechanism between cerebellar and brainstem nuclei and has been associated with a wide range of diseases, including Lafora disease, dentatorubropallidoluysian atrophy, and celiac disease.