Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The prognosis of nocardiosis is highly variable. The state of the host's health, site, duration, and severity of the infection all play parts in determining the prognosis. As of now, skin and soft tissue infections have a 100% cure rate, and pleuropulmonary infections have a 90% cure rate with appropriate therapy. The cure rate falls to 63% with those infected with dissemented nocardiosis, with only half of those surviving infections that cause brain abscess. Additionally, 44% of people who are infected in the spinal cord/brain die, increasing to 85% if that person has an already weakened immune system. Unfortunately, there is not a preventative to nocardiosis. The only recommendation is to protect open wounds to limit access.
"Candida albicans", a yeast, is associated with endocarditis in IV drug users and immunocompromised patients. Other fungi demonstrated to cause endocarditis are "Histoplasma capsulatum" and Aspergillus. Endocarditis with "Tricosporon asahii" has also been reported in a case report.
Risk factors for infective endocarditis are based on the premise that in a healthy individual, bacteremia (bacteria entering the blood stream) is cleared quickly with no adverse consequences. However, if a heart valve is damaged, the bacteria can attach themselves to the valve, resulting in infective endocarditis. Additionally, in individuals with weakened immune systems, the concentration of bacteria in the blood can reach levels high enough to increase the probability that some will attach to the valve. Some significant risk factors are listed here:
1. Artificial heart valves
2. Intracardiac devices, such as Implantable cardioverter-defibrillators
3. Unrepaired cyanotic congenital heart defects
4. History of infective endocarditis
5. Chronic rheumatic heart disease, which is an autoimmune response to repeated "Streptococcus pyogenes" infection
6. Age-related degenerative valvular lesions
7. Hemodialysis, a medical procedure that filters the blood of individuals with kidney failure
8. Coexisting conditions, especially ones that suppress immunity. Diabetes mellitus, alcohol abuse, HIV/AIDS, and intravenous drug use all fall in this category
More detailed descriptions of these and other risk factors are provided below.
Other conditions that result in high number of bacteria entering into the bloodstream include colorectal cancer (mostly "Streptococcus bovis"), serious urinary tract infections (mostly enterococci), and drug injection ("Staphylococcus aureus"). With a large number of bacteria, even a normal heart valve may become infected.
A more virulent organism (such as "Staphylococcus aureus") can cause infective endocarditis by infecting even a normal heart valve.
Intravenous drug users tend to get their right-sided heart valves infected because the veins that are injected drain into the right side of the heart. In rheumatic heart disease, infection occurs on the aortic and the mitral valves on the left side of the heart.
Other factors that increase the risk of developing infective endocarditis are low levels of white blood cells, immunodeficiency or immunosuppression, malignancy, diabetes mellitus, and alcohol abuse.
Although there is not international data available on worldwide infection rates per year, there are roughly 500–1000 documented cases of nocardiosis a year. Most of these cases occur in men, as there is a 3:1 ratio of male of female cases a year; however, this difference may be based on exposure frequency rather than susceptibility differences. From an age perspective, it is not highly more prevalent in one age group than another. Cutaneous Nocardiosis is slightly more common in middle aged men, but as a whole, all ages are susceptible. Additionally, there is no racial basis when it comes to becoming infected with Nocardiosis.
The mechanism of subacute bacterial endocarditis could be due to malformed stenotic valves which in the company of bacteremia, become infected, via adhesion and subsequent colonization of the surface area. This causes an inflammatory response, with recruitment of matrix metalloproteinases, and destruction of collagen.
Underlying structural valve disease is usually present in patients before developing subacute endocarditis, and is less likely to lead to septic emboli than is acute endocarditis, but subacute endocarditis has a relatively slow process of infection and, if left untreated, can worsen for up to one year before it is fatal. In cases of subacute bacterial endocarditis, the causative organism (streptococcus viridans) needs a previous heart valve disease to colonize. On the other hand, in cases of acute bacterial endocarditis, the organism can colonize on the healthy heart valve, causing the disease.
There are several risk factors that increase the likelihood of developing bacteremia from any type of bacteria. These include:
- HIV infection
- Diabetes Mellitus
- Chronic hemodialysis
- Solid organ transplant
- Stem cell transplant
- Treatment with glucocorticoids
- Liver failure
Individuals with a weak immune system are most at risk. This includes individuals taking immunosuppressive medication, cancer patients, HIV patients, premature babies with very low birth weight, the elderly, etc.
People who are at an increased risk of acquiring particular fungal infections in general may also be at an increased risk of developing fungal meningitis, as the infection may in some cases spread to the CNS. People residing in the Midwestern United States, and Southwestern United States and Mexico are at an increased risk of infection with "Histoplasma" and "Coccidioides", respectively.
Prognosis depends on the pathogen responsible for the infection and risk group. Overall mortality for "Candida" meningitis is 10-20%, 31% for patients with HIV, and 11% in neurosurgical cases (when treated). Prognosis for "Aspergillus" and coccidioidal infections is poor.
It is usually caused by a form of streptococci viridans bacteria that normally live in the mouth ("Streptococcus mutans, mitis, sanguis "or "milleri").
Other strains of streptococci can also cause subacute endocarditis, streptococcus intermedius:
acute and subacute infection ( can causes about 15% of cases pertaining to infective endocarditis). Additional enterococci (urinary tract infections) and coagulase negative staphylococci can also be causative agents.
Gram negative bacterial species are responsible for approximately 24% of all cases of healthcare-associated bacteremia and 45% of all cases of community-acquired bacteremia. In general, gram negative bacteria enter the bloodstream from infections in the respiratory tract, genitourinary tract, gastrointestinal tract, or hepatobiliary system. Gram-negative bacteremia occurs more frequently in elderly populations (65 years or older) and is associated with higher morbidity and mortality in this population.
"E.coli" is the most common cause of community-acquired bacteremia accounting for approximately 75% of cases. E.coli bacteremia is usually the result of a urinary tract infection. Other organisms that can cause community-acquired bacteremia include "pseudomonas aeruginosa", "klebsiella pneumoniae", and "proteus mirabilis". "Salmonella" infection, despite mainly only resulting in gastroenteritis in the developed world, is a common cause of bacteremia in Africa. It principally affects children who lack antibodies to Salmonella and HIV+ patients of all ages.
Among healthcare-associated cases of bacteremia, gram negative organisms are an important cause of bacteremia in the ICU. Catheters in the veins, arteries, or urinary tract can all create a way for gram negative bacteria to enter the bloodstream. Surgical procedures of the genitourinary tract, intestinal tract, or hepatobiliary tract can also lead to gram negative bacteremia. "Pseudomonas" and "enterobacter" species are the most important causes of gram negative bacteremia in the ICU.
It is not practical to test or decontaminate most sites that may be contaminated with "H. capsulatum", but the following sources list environments where histoplasmosis is common, and precautions to reduce a person's risk of exposure, in the three parts of the world where the disease is prevalent. Precautions common to all geographical locations would be to avoid accumulations of bird or bat droppings.
The US National Institute for Occupational Safety and Health (NIOSH) provides information on work practices and personal protective equipment that may reduce the risk of infection. This document is available in English and Spanish.
Authors at the University of Nigeria have published a review which includes information on locations in which histoplasmosis has been found in Africa (in chicken runs, bats and the caves bats infest, and in soil), and a thorough reference list including English, French, and Spanish language references.
"Histoplasmosis capsulatum" is found throughout the world. It is endemic in certain areas of the United States, particularly in states bordering the Ohio River valley and the lower Mississippi River. The humidity and acidity patterns of soil are associated with endemicity. Bird and bat droppings in soil promote growth of "Histoplasma". Contact with such soil aerosolizes the microconidia, which can infect humans. It is also common in caves in southern and East Africa. Positive histoplasmin skin tests occur in as many as 90% of the people living in areas where "H. capsulatum" is common, such as the eastern and central United States.
In Canada, the St. Lawrence River Valley is the site of the most frequent infections, with 20-30 percent of the population testing positive.
In India, the Gangetic West Bengal is the site of most frequent infections, with 9.4 percent of the population testing positive. "Histoplasma capsulatum capsulatum" was isolated from the local soil proving endemicity of histoplasmosis in West Bengal.
Opportunistic infections caused by Feline Leukemia Virus and Feline immunodeficiency virus retroviral infections can be treated with Lymphocyte T-Cell Immune Modulator.
Since opportunistic infections can cause severe disease, much emphasis is placed on measures to prevent infection. Such a strategy usually includes restoration of the immune system as soon as possible, avoiding exposures to infectious agents, and using antimicrobial medications ("prophylactic medications") directed against specific infections.
Diagnosis is made with isolation of "Pasteurella multocida" in a normally sterile site (blood, pus, or cerebrospinal fluid).
As the infection is usually transmitted into humans through animal bites, antibiotics usually treat the infection, but medical attention should be sought if the wound is severely swelling. Pasteurellosis is usually treated with high-dose penicillin if severe. Either tetracycline or chloramphenicol provides an alternative in beta-lactam-intolerant patients. However, it is most important to treat the wound.
Marantic vegetations are often associated with previous rheumatic fever.
Other risk factors include:
- hypercoagulable states
- malignant cancers, especially mucin-producing adenocarcinomas (most commonly associated with pancreatic adenocarcinomas)
- systemic lupus erythematosus: Referred to as Libman-Sacks endocarditis
- trauma (e.g., catheters)
Nonbacterial thrombotic endocarditis (NBTE) is most commonly found on previously undamaged valves. As opposed to infective endocarditis, the vegetations in NBTE are small, sterile, and tend to aggregate along the edges of the valve or the cusps. Also unlike infective endocarditis, NBTE does not cause an inflammation response from the body. NBTE usually occurs during a hypercoagulable state such as system-wide bacterial infection, or pregnancy, though it is also sometimes seen in patients with venous catheters. NBTE may also occur in patients with cancers, particularly mucinous adenocarcinoma where Trousseau syndrome can be encountered. Typically NBTE does not cause many problems on its own, but parts of the vegetations may break off and embolize to the heart or brain, or they may serve as a focus where bacteria can lodge, thus causing infective endocarditis.
Another form of sterile endocarditis is termed Libman–Sacks endocarditis; this form occurs more often in patients with lupus erythematosus and is thought to be due to the deposition of immune complexes. Like NBTE, Libman-Sacks endocarditis involves small vegetations, while infective endocarditis is composed of large vegetations. These immune complexes precipitate an inflammation reaction, which helps to differentiate it from NBTE. Also unlike NBTE, Libman-Sacks endocarditis does not seem to have a preferred location of deposition and may form on the undersurfaces of the valves or even on the endocardium.
Infective endocarditis is an infection of the inner surface of the heart, usually the valves. Symptoms may include fever, small areas of bleeding into the skin, heart murmur, feeling tired, and low red blood cells. Complications may include valvular insufficiency, heart failure, stroke, and kidney failure.
The cause is typically a bacterial infection and less commonly a fungal infection. Risk factors include valvular heart disease including rheumatic disease, congenital heart disease, artificial valves, hemodialysis, intravenous drug use, and electronic pacemakers. The bacterial most commonly involved are streptococci or staphylococci. Diagnosis is suspected based on symptoms and supported by blood cultures or ultrasound.
The usefulness of antibiotics following dental procedures for prevention is unclear. Some recommend them in those at high risk. Treatment is generally with intravenous antibiotics. The choice of antibiotics is based on the blood cultures. Occasionally heart surgery is required.
The number of people affected is about 5 per 100,000 per year. Rates, however, vary between regions of the world. Males are affected more often than females. The risk of death among those infected is about 25%. Without treatment it is almost universally fatal.
Streptococcus species are the cause of opportunistic infections in poultry leading to acute and chronic conditions in affected birds. Disease varies according to the Streptococcal species but common presentations include septicaemia, peritonitis, salpingitis and endocarditis.
Common species affecting poultry include:
- "S. gallinaceus" in broiler chickens
- "S. gallolyticus" which is a pathogen of racing pigeons and turkey poults
- "S. dysgalactiae" in broiler chickens
- "S. mutans" in geese
- "S. pluranimalium" in broiler chickens
- "S. equi subsp. zooepidemicus" in chickens and turkeys
- "S. suis" in psittacine birds
The treatment of choice is a single dose of benzathine benzylpenicillin given by intramuscular injection, or a five-day to one-week course of either oral penicillin or intramuscular procaine benzylpenicillin. Erythromycin or doxycycline may be given instead to people who are allergic to penicillin. "E. rhusiopathiae" is intrinsically resistant to vancomycin.
Cat-scratch disease has a worldwide distribution, however it is a nonreportable disease in humans and therefore public health data on this disease is inadequate. Geographical location, present season and variables associated with cats (such as exposure and degree of flea infestation) all play a factor in the prevalence of Cat-scratch disease within a population. In warmer climates, the incidence of Cat-scratch disease is more prevalent during the fall and winter months. The higher rate of Cat-scratch disease during those months may be attributed to the breeding season for adult cats, which allows for the birth of kittens". B henselae," the bacterium responsible for causing Cat-scratch disease, is more prevalent in younger cats [less than one year old] than it is in adult cats.
To determine recent incidence of Cat-scratch disease in the United States, the Truven Health MarketScan Commercial Claims and Encounters database was analyzed in a case control study from 2005-2013. The database consisted of healthcare insurance claims for employees, their spouses, and their dependents. All participants were under 65 years of age, from all 50 states. The length of the study period was 9 years and was based off 280,522,578 person-years; factors such as year, length of insurance coverage, region, age, and sex were used to calculate the person-years incidence rate to eliminate confounding variables among the entire study population. 13,273 subjects were diagnosed with Cat-scratch disease, both in and outpatient cases were analyzed. The study revealed an incidence rate of 4.5/100,000 outpatient cases of Cat-scratch disease. For inpatient cases, the incidence rate was much lower at 0.19/100,000 population. Incidence of Cat-scratch disease was highest in 2005 among outpatient cases and then slowly declined. The Southern states saw the most significant decrease of incidence overtime. Mountain regions have the lowest incidence of this disease because fleas are not a common vector found in these areas.
Distribution of Cat-scratch disease among children aged 5-9 were of the highest incidence in the analyzed database, followed by woman aged 60-64. Incidence among female patients was higher than that among male patients in all age groups. According to data on social trends, women are more likely to own a cat over men; which supports higher incidence rates of this disease in women. Risk of contracting Cat-scratch disease increases as the number of cats residing in the home increases. The number of pet cats in the United States is estimated to be at 57 million. Due to the large population of cats residing in the United States, the ability of this disease to continue to infect humans is vast. Laboratory diagnosis of Cat-scratch disease has improved in recent years, which may support an increase in incidence of Cat-scratch disease in future populations.
Carrión's disease, or Oroya fever, or Peruvian wart is a rare infectious disease found only in Peru, Ecuador, and Colombia. It is endemic in some areas of Peru, is caused by infection with the bacterium "Bartonella bacilliformis", and transmitted by sandflies of genus "Lutzomyia".
Cat scratch disease occurs worldwide. Cats are the main reservoir of "Bartonella henselae", and the bacterium is transmitted to cats by the cat flea "Ctenocephalides felis". Infection in cats is very common with a prevalence estimated between 40-60%, younger cats being more commonly infective. Cats usually become immune to the infection, while dogs may be very symptomatic. Humans may also acquire it through flea or tick bites from infected dogs, cats, coyotes, and foxes.
Trench fever, produced by "Bartonella quintana" infection, is transmitted by the human body louse "Pediculus humanus corporis". Humans are the only known reservoir. Thorough washing of clothing may help to interrupt the transmission of infection.
A possible role for ticks in transmission of "Bartonella" species remains to be elucidated; in November 2011, "Bartonella rochalimae", "B. quintana", and "B. elizabethae" DNA was first reported in "Rhipicephalus sanguineus" and "Dermacentor nitens" ticks in Peru.
People with recurrent boils are as well more likely to have a positive family history, take antibiotics, and to have been hospitalised, anemic, or diabetic; they are also more likely to have associated skin diseases and multiple lesions.
The disease PCP is relatively rare in people with normal immune systems, but common among people with weakened immune systems, such as premature or severely malnourished children, the elderly, and especially persons living with HIV/AIDS (in whom it is most commonly observed). PCP can also develop in patients who are taking immunosuppressive medications. It can occur in patients who have undergone solid organ transplantation or bone marrow transplantation and after surgery. Infections with "Pneumocystis" pneumonia are also common in infants with hyper IgM syndrome, an X-linked or autosomal recessive trait.
The causative organism of PCP is distributed worldwide and "Pneumocystis" pneumonia has been described in all continents except Antarctica. Greater than 75% of children are seropositive by the age of 4, which suggests a high background exposure to the organism. A post-mortem study conducted in Chile of 96 persons who died of unrelated causes (suicide, traffic accidents, and so forth) found that 65 (68%) of them had pneumocystis in their lungs, which suggests that asymptomatic pneumocystis infection is extremely common.
"Pneumocystis jirovecii" was originally described as a rare cause of pneumonia in neonates. It is commonly believed to be a commensal organism (dependent upon its human host for survival). The possibility of person-to-person transmission has recently gained credence, with supporting evidence coming from many different genotyping studies of "Pneumocystis jirovecii" isolates from human lung tissue. For example, in one outbreak of 12 cases among transplant patients in Leiden, it was suggested as likely, but not proven, that human-to-human spread may have occurred.