Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Strabismus can be seen in Down syndrome, Loeys-Dietz syndrome, cerebral palsy, and Edwards syndrome. The risk is increased among those with a family history of the condition.
Fixation disparity exists when there is a small misalignment of the eyes when viewing with binocular vision. The misaligment may be vertical, horizontal or both. The misalignment (a few minutes of arc) is much smaller than that of strabismus, which prevents binocular vision, although it may reduce a patient's level of stereopsis. A patient may or may not have fixation disparity and a patient may have a different fixation disparity at distance than near.
Heterophoria is an eye condition in which the directions that the eyes are pointing at rest position, when "not" performing binocular fusion, are not the same as each other, or, "not straight". There can be esophoria, where the eyes tend to cross inward in the absence of fusion; exophoria, in which they diverge; or hyperphoria, in which one eye points up or down relative to the other. Phorias are known as 'latent squint' because the tendency of the eyes to deviate is kept latent by fusion. A person with two normal eyes has single vision (usually) because of the combined use of the sensory and motor systems. The motor system acts to point both eyes at the target of interest; any offset is detected visually (and the motor system corrects it). Heterophoria only occurs during dissociation of the left eye and right eye, when fusion of the eyes is absent. If you cover one eye (e.g. with your hand) you remove the sensory information about the eye's position in the orbit. Without this, there is no stimulus to binocular fusion, and the eye will move to a position of "rest". The difference between this position, and where it would be were the eye uncovered, is the heterophoria. The opposite of heterophoria, where the eyes are straight when relaxed and not fusing, is called orthophoria.
In contrast, fixation disparity is a very small deviation of the pointing directions of the eyes that is present while performing binocular fusion.
Heterophoria is usually asymptomatic. This is when it is said to be "compensated". When fusional reserve is used to compensate for heterophoria, it is known as compensating vergence. In severe cases, when the heterophoria is not overcome by fusional vergence, sign and symptoms appear. This is called decompensated heterophoria.
Heterophoria may lead to squint or also known as strabismus.
When the fusional vergence system can no longer hold back heterophoria, the phoria manifests. In this condition, the eyes deviate from the fixating position.
People of all ages who have noticeable strabismus may experience psychosocial difficulties. Attention has also been drawn to potential socioeconomic impact resulting from cases of detectable strabismus. A socioeconomic consideration exists as well in the context of decisions regarding strabismus treatment, including efforts to re-establish binocular vision and the possibility of stereopsis recovery.
One study has shown that strabismic children commonly exhibit behaviors marked by higher degrees of inhibition, anxiety, and emotional distress, often leading to outright emotional disorders. These disorders are often related to a negative perception of the child by peers. This is due not only to an altered aesthetic appearance, but also because of the inherent symbolic nature of the eye and gaze, and the vitally important role they play in an individual's life as social components. For some, these issues improved dramatically following strabismus surgery. Notably, strabismus interferes with normal eye contact, often causing embarrassment, anger, and feelings of awkwardness, thereby affecting social communication in a fundamental way, with a possible negative effect on self esteem.
Children with strabismus, particularly those with exotropia (an outward turn), may be more likely to develop a mental health disorder than normal-sighted children. Researchers have theorized that esotropia (an inward turn) was not found to be linked to a higher propensity for mental illness due to the age range of the participants, as well as the shorter follow-up time period; esotropic children were monitored to a mean age of 15.8 years, compared with 20.3 years for the exotropic group. A subsequent study with participants from the same area monitored congenital esotropia patients for a longer time period; results indicated that esotropic patients "were" also more likely to develop mental illness of some sort upon reaching early adulthood, similar to those with constant exotropia, intermittent exotropia, or convergence insufficiency. The likelihood was 2.6 times that of controls. No apparent association with premature birth was observed, and no evidence was found linking later onset of mental illness to psychosocial stressors frequently encountered by those with strabismus.
Investigations have highlighted the impact that strabismus may typically have on quality of life. Studies in which subjects were shown images of strabismic and non-strabismic persons showed a strong negative bias towards those visibly displaying the condition, clearly demonstrating the potential for future socioeconomic implications with regard to employability, as well as other psychosocial effects related to an individual's overall happiness.
Adult and child observers perceived a right heterotropia as more disturbing than a left heterotropia, and child observers perceived an esotropia as "worse" than an exotropia. Successful surgical correction of strabismus—for adult patients as well as children—has been shown to have a significantly positive effect on psychological well-being.
Very little research exists regarding coping strategies employed by adult strabismics. One study categorized coping methods into three subcategories: avoidance (refraining from participation an activity), distraction (deflecting attention from the condition), and adjustment (approaching an activity differently). The authors of the study suggested that individuals with strabismus may benefit from psychosocial support such as interpersonal skills training.
No studies have evaluated whether psychosocial interventions have had any benefits on individuals undergoing strabismus surgery.
There are several methods to quantify fixation disparity. The Mallett card, the Bernell lantern slide, the Wesson Card and the Disparometer may be used. A patient's associated phoria is the amount of prism needed to reduce their fixation disparity to zero minutes of arc.
The Mallett Fixation Disparity Unit
Instrument used to measure the associated heterophoria (or compensating prism). It consists of a small central fixation letter X surrounded by two letters O, one on each side of X, the three letters being seen binocularly, and two coloured polarized vertical bars in line with the centre of the X which are seen by each eye separately. The instrument can be swung through 90° to measure any vertical fixation disparity. The associated phoria is indicated by the misalignment of the two polarized bars when the subject fixates the X through cross-polarized filters in front of the eyes. The amount of associated phoria is given by the value of the base-in or base-out prism power necessary to produce alignment and the eye. The unit can also be used to detect suppression. See Disparometer; associated heterophoria; uncompensated heterophoria.
Exophoria can be caused by several factors, which include:
- Refractive errors - distance and near deviation approximately equal.
- Divergence excess - exodeviation is more than 15 dioptres greater for distance than near deviation.
- Convergence insufficiency - near exodeviation greater than distance deviation.
These can be due to nerve, muscle, or congenital problems, or due to mechanical anomalies. Unlike exotropia, fusion is possible in this condition, causing diplopia to be uncommon.
Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria.
Causes include:
- Refractive errors
- Divergence insufficiency
- Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.
Unlike esotropia, fusion is possible and therefore diplopia is uncommon.
Exophoria is particularly common in infancy and childhood, and increases with age.
Eye strain, also known as asthenopia, is an eye condition that manifests through nonspecific symptoms such as fatigue, pain in or around the eyes, blurred vision, headache, and occasional double vision. Symptoms often occur after reading, computer work, or other close activities that involve tedious visual tasks.
When concentrating on a visually intense task, such as continuously focusing on a book or computer monitor, the ciliary muscle tightens. This can cause the eyes to get irritated and uncomfortable. Giving the eyes a chance to focus on a distant object at least once an hour usually alleviates the problem.
A CRT computer monitor with a low refresh rate (<70Hz) or a CRT television can cause similar problems because the image has a visible flicker. Aging CRTs also often go slightly out of focus, and this can cause eye strain. LCDs do not go out of focus but are also susceptible to flicker if the backlight for the LCD uses PWM for dimming. This causes the backlight to turn on and off for shorter intervals as the display becomes dimmer, creating noticeable flickering which causes eye fatigue.
A page or photograph with the same image twice slightly displaced (from a printing mishap, or a camera moving during the shot) can cause eye strain by the brain misinterpreting the image fault as diplopia and trying in vain to adjust the sideways movements of the two eyeballs to fuse the two images into one. The word is from Greek "asthen-opia: ἀσθεν-ωπία" = "weak-eye-condition".
Eye strain can happen with a blurred image (including images deliberately partly blurred for censorship), due to the ciliary muscle tightening trying in vain to focus the blurring out.
Sometimes asthenopia can be due to specific visual problems—for example, uncorrected refraction errors or binocular vision problems such as accommodative insufficiency or heterophoria. It is often caused by the viewing of monitors such as those of computers or phones for prolonged periods of time.