Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The prognosis is generally poor. With early onset, death usually occurs within 10 years from the onset of symptoms. Individuals with the infantile form usually die before the age of 7. Usually, the later the disease occurs, the slower its course is.
Its occurrence is very rare. The infantile form from birth to 2 years of age. The average duration of the infantile form of the illness is usually about 3 years. Onset of the juvenile form presents between two and twelve years of age. Duration of this form is in most cases about 6 years. The adult form from twelve years and older. In younger patients, seizures, megalencephaly, developmental delay, and spasticity are usually present. Neonatal onset is also reported. Onset in adults is least frequent. In older patients, bulbar or pseudobulbar symptoms and spasticity predominate. Symptoms of the adult form may also resemble multiple sclerosis.
There are no more than 500 reported cases.
Patients with severe forms of MJD have a life expectancy of approximately 35 years. Those with mild forms have a normal life expectancy. The cause of death of those who die early is often aspiration pneumonia.
There is no cure or treatment for GSS. It can, however, be identified through genetic testing. GSS is the slowest to progress among human prion diseases. Duration of illness can range from 3 months to 13 years, with an average duration of 5 or 6 years.
GSS is one of a small number of diseases that are caused by prions, a class of pathogenic proteins highly resistant to proteases.
A change in codon 102 from proline to leucine has been found in the prion protein gene ("PRNP", on chromosome 20) of most affected individuals. Therefore, it appears this genetic change is usually required for the development of the disease.
HDL1 is an unusual, autosomal dominant familial prion disease. Only described in one family, it is caused by an eight-octapeptide repeat insertion in the "PRNP" gene. More broadly, inherited prion diseases in general can mimic HD.
The Huntington's disease-like syndromes (often abbreviated as HD-like or "HDL" syndromes) are a family of inherited neurodegenerative diseases that closely resemble Huntington's disease (HD) in that they typically produce a combination of chorea, cognitive decline or dementia and behavioural or psychiatric problems.
Neurodegeneration is the progressive loss of structure or function of neurons, including death of neurons. Many neurodegenerative diseases – including amyotrophic lateral sclerosis, Parkinson's, Alzheimer's, and Huntington's – occur as a result of neurodegenerative processes. Such diseases are incurable, resulting in progressive degeneration and/or death of neuron cells. As research progresses, many similarities appear that relate these diseases to one another on a sub-cellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate many diseases simultaneously. There are many parallels between different neurodegenerative disorders including atypical protein assemblies as well as induced cell death. Neurodegeneration can be found in many different levels of neuronal circuitry ranging from molecular to systemic.
Neuroferritinopathy or adult-onset basal ganglia disease is a genetic neurodegenerative disorder characterized by the accumulation of iron in the basal ganglia, cerebellum, and motor cortex of the human brain. Symptoms, which are extrapyramidal in nature, progress slowly and generally do not become apparent until adulthood. These symptoms include chorea, dystonia, and cognitive deficits which worsen with age.
This disorder is autosomal dominant and is caused by mutations in the gene encoding the light chain subunit of the ferritin protein. Wild type ferritin functions as a buffer for iron, sequestering it and controlling its release. Thus, mutations in the light chain of ferritin result in the accumulation of iron in the brain which can be imaged using MRI. Currently, neuroferritinopathy is the only neurodegenerative disease with an iron accumulation in the brain classified as an autosomal dominant syndrome.
Treatment of neuroferritinopathy is focused on managing symptoms associated with chorea and dystonia using standard medications for each. The disorder is progressive and symptoms become worse with age. Fewer than 100 cases of neuroferritinopathy have been reported since its identification in 2001. Its incidence has been largely localized to Northeast England suggesting a founder effect. Due to its genetic nature, current research is focused on therapeutic management of the symptoms caused by the disorder.
All brain iron disorders were previously labeled Hallervorden-Spatz syndrome, after the scientists who first discovered individuals with abnormal iron levels in 1922. Brain iron disorders are now divided into three categories: genetic neurodegeneration with brain iron accumulation, genetic systemic iron accumulation with neurologic features, and acquired diseases associated with iron excess or iron deficiency. Neuroferritinopathy is classified under the first category, genetic neurodegeneration with brain iron accumulation. Neuroferritinopathy is classified as a late-onset basal ganglia disease and is a dominantly inherited neurodegenerative disease. Four different alleles are responsible for neuroferritinopathy. Three arise from nucleotide insertions in the ferritin light chain (FTL) polypeptide gene while the fourth arises from a missense mutation in the FTL gene.
The prevalence and incidence remain unknown but FTDP-17 is an extremely rare condition. It is caused by mutations in the MAPT gene, which encodes a microtubule-binding protein. Over 100 families with 38 different mutations in the tau gene have been identified worldwide. The phenotype of FTDP-17 varies not only between families carrying different mutations but also between and within families carrying the same mutations.
Jansky–Bielschowsky disease is an extremely rare autosomal recessive genetic disorder that is part of the neuronal ceroid lipofuscinosis (NCL) family of neurodegenerative disorders. It is caused by the accumulation of lipopigments in the body due to a deficiency in tripeptidyl peptidase I as a result of a mutation in the TPP1 gene. Symptoms appear between ages 2 and 4 and consist of typical neurodegenerative complications: loss of muscle function (ataxia), drug resistant seizures (epilepsy), apraxia, development of muscle twitches (myoclonus), and vision impairment. This late-infantile form of the disease progresses rapidly once symptoms are onset and ends in death between age 8 and teens. The prevalence of Jansky–Bielschowsky disease is unknown, however NCL collectively affects an estimated 1 in 100,000 individuals worldwide. Jansky–Bielschowsky disease is also known as: late-infantile Batten disease, LINCL, or neuronal ceroid lipofuscinosis.
Parkinson-plus syndromes are usually more rapidly progressive and less likely to respond to antiparkinsonian medication than PD. However, the additional features of the diseases may respond to medications not used in PD.
Current therapy for Parkinson-plus syndromes is centered around a multidisciplinary treatment of symptoms.
These disorders have been linked to pesticide exposure.
Clinical presentation of CBD usually does not occur until age 60, with the earliest recorded diagnosis and subsequent postmortem verification being age 28. Although men and women present with the disease, some analysis has shown a predominant appearance of CBD in women. Current calculations suggest that the prevalence of CBD is approximately 4.9 to 7.3 per 100,000 people. The prognosis for an individual diagnosed with CBD is death within approximately eight years, although some patients have been diagnosed over 17 years ago (2017) and are still in relatively good standing, but with serious debilitation such as dysphagia, and overall limb rigidity. The partial (or total) use of a feeding tube may be necessary and will help prevent aspiration pneumonia, primary cause of death in CBD. Incontinence is common, as patients often can't express their need to go, due to eventual loss of speech. Therefore, proper hygiene is mandatory to prevent urinary tract infections.
The disease is caused by a mutation in the ATXN3 gene, which is located on chromosome 14q. The gene contains lengthy irregular repetitions of the code "CAG", producing a mutated protein called ataxin-3. (Normally, the number of copies is between 13 and 41.) MJD is an autosomal dominant disease, meaning that if either parent gives the defective gene to a child, the child will show symptoms of the disease. Therefore, if one parent suffers from this disease and the other parent does not, there will be a 50% chance of their child inheriting the disease.
The pons (a structure located on the brain stem) is one of the areas affected by MJD. The striatum (a brain area connected to balance and movement) is also affected by this disease, which could explain both of the main motor problems cause by MJD: the tightening and twisting of the limb and the abrupt, irregular movements.
In affected cells, this protein builds up and assembles intranuclear inclusion bodies. These insoluble aggregates are hypothesized to interfere with the normal activity of the nucleus and induce the cell to degenerate and die.
The prognosis and rate of the diseases progression vary considerably among individual patients and genetic kindreds, ranging from life expectancies of several months to several years, and, in exceptional cases, as long as two decades.
A 2006 study followed 223 patients for a number of years. Of these, 15 died, with a median age of 65 years. The authors tentatively concluded that this is in line with a previously reported estimate of a shortened life expectancy of 10-15 years (12 in their data).
Pick's disease is a term that can be used in two different ways. It has traditionally been used as a term for a group of neurodegenerative diseases with symptoms attributable to frontal and temporal lobe dysfunction. Common symptoms that are noticed early are personality and emotional changes, as well as deterioration of language. This condition is now more commonly called frontotemporal dementia by professionals, and the use of "Pick's disease" as a clinical diagnosis has fallen out of fashion. The second use of the term (and the one now used among professionals) is to mean a specific pathology that is one of the causes of frontotemporal lobar degeneration. These two uses have previously led to confusion among professionals and patients and so its use should be restricted to the specific pathological subtype described below. It is also known as Pick disease and PiD (not to be confused with pelvic inflammatory disease (PID) or Parkinson's disease (PD)). A defining characteristic of the disease is build-up of tau proteins in neurons, accumulating into silver-staining, spherical aggregations known as "Pick bodies".
The majority of cases are a result of mutations in the TPP1 gene, however mutations in the CLN5, CLN6, CLN8, MFSD8, and PPT1 genes also account for a small amount of cases. These mutations result in reduced activity of peptidase enzymes, particularly affecting lysosomes, but other mutations can affect protein catabolism in white blood cells, fibroblasts, and chorionic villi. The reduced function of these enzymes results in insufficient or incomplete breakdown of proteins, consequently resulting in the buildup of lipopigments in the lysosome. Though the accumulation of lipopigments occurs throughout the body, neurons are especially vulnerable to damage by lipopigment aggregation; a ubiquitous accumulation in lipopigments occurs in neurons, primarily concentrated in the cerebral and cerebellar cortices. This accumulation results in atrophy in these regions of the brain, and cause the pathogenesis of signs and symptoms of Jansky–Bielschowsky disease. Currently, it is unclear what mechanism in relation to enzyme activity is responsible for the buildup of lipoproteins.
Chorea-acanthocytosis (ChAc, also called Choreoacanthocytosis), is a rare hereditary disease caused by a mutation of the gene that directs structural proteins in red blood cells. It belongs to a group of four diseases characterized under the name Neuroacanthocytosis. When a patient's blood is viewed under a microscope, some of the red blood cells appear thorny. These thorny cells are called acanthocytes.
Other effects of the disease may include epilepsy, behaviour changes, muscle degeneration, and neuronal degradation similar to Huntington's Disease. The average age of onset of symptoms is 35 years. The disease is incurable and inevitably leads to premature death.
Some more information about Chorea-acanthocytosis is that it is a very complex autosomal recessive adult-onset neurodegenerative disorder. It often shows itself as a mixed movement disorder, in which chorea, tics, dystonia and even parkinsonism may appear as a symptom.
This disease is also characterized by the presence of a few different movement disorders including chorea, dystonia etc.
Chorea-acanthocytosis is considered an autosomal recessive disorder, although a few cases with autosomal dominant inheritance have been noted.
Olivopontocerebellar atrophy is hereditary, but has an unknown genetic basis. There are two forms:
A few non-hereditary diseases formerly categorized as olivopontocerebellar atrophy have been reclassified as forms of multiple system atrophy as well as to four hereditary types, that have been currently reclassified as four different forms of spinocerebellar ataxia:
Parkinson-plus syndromes, also known as disorders of multiple system degeneration, is a group of neurodegenerative diseases featuring the classical features of Parkinson's disease (tremor, rigidity, akinesia/bradykinesia, and postural instability) with additional features that distinguish them from simple idiopathic Parkinson's disease (PD). Some consider Alzheimer's disease to be in this group. Parkinson-plus syndromes are either inherited genetically or occur sporadically.
The atypical parkinsonian or Parkinson-plus syndromes are often difficult to differentiate from PD and each other. They include multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD). Dementia with Lewy bodies (DLB), may or may not be part of the PD spectrum, but it is increasingly recognized as the second-most common type of neurodegenerative dementia after Alzheimer's disease. These disorders are currently lumped into two groups, the synucleinopathies and the tauopathies. They may coexist with other pathologies.
Additional Parkinson-plus syndromes include Pick's disease and olivopontocerebellar atrophy. The latter is characterized by ataxia and dysarthria, and may occur either as an inherited disorder or as a variant of multiple system atrophy. MSA is also characterized by autonomic failure, formerly known as Shy–Drager syndrome.
Clinical features that distinguish Parkinson-plus syndromes from idiopathic PD include symmetrical onset, a lack of or irregular resting tremor, and a reduced response to dopaminergic drugs (including levodopa). Additional features include bradykinesia, early-onset postural instability, increased rigidity in axial muscles, dysautonomia, alien limb syndrome, supranuclear gaze palsy, apraxia, involvement of the cerebellum including the pyramidal cells, and in some instances significant cognitive impairment.
The prognosis of this disease is very variable and can take three different courses: a monophasic, not remitting;
remitting;
and finally, progressive, with increase in deficits.
The symptoms of Pick's disease include difficulty in language and thinking, efforts to dissociate from family, behavioral changes, unwarranted anxiety, irrational fears, CBD (Compulsive buying disorder, or oniomania), impaired regulation of social conduct (e.g., breaches of etiquette, vulgar language, tactlessness, , misperception), passivity, low motivation (aboulia), inertia, over-activity, pacing and wandering. It is a characteristic of Pick’s disease that dysfunctional, argumentative, or hostile social conduct is initially exhibited towards family members and not initially exhibited in a workplace or neutral environment. The changes in personality allow doctors to distinguish between Pick's disease and Alzheimer's disease. Pick's disease is one of the causes of the clinical syndrome of frontotemporal lobar degeneration which has three subtypes. Pick's disease pathology is associated more with the frontotemporal dementia and progressive nonfluent aphasia subtypes than the semantic dementia subtype.
There are multiple symptoms that can help this disease to be diagnosed, this disease is marked by the presence of acanthocytes in blood (these acanthocytes can sometimes be absent or even make a late appearance in the course of the disease.) and neurodegeneration causing a choreiform movement disorder.
Another one of them would be that this disease should be considered in patients who have elevated levels of acanthocytes in a peripheral blood film.
The serum creatine kinase is often elevated in the body of the people who are affected by this disease.
People afflicted by this disease also experience a loss of neurons. Loss of neurons is a hallmark of neurodegenerative diseases. Due to the generally non-regenerative nature of neuronal cells in the adult central nervous system, this results in an irreversible and fatal process of neurodegeneration. There is also the presence of several movement related disorders including chorea, dystonia and bradykinesia, one of the more incapacitating ones includes Truncal spasms.