Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The role of prolonged cortical myelination in human evolution has been implicated as a contributing factor in some cases of demyelinating disease. Unlike other primates, humans exhibit a unique pattern of postpubertal myelination, which may contribute to the development of psychiatric disorders and neurodegenerative diseases that present in early adulthood and beyond. The extended period of cortical myelination in humans may allow greater opportunity for disruption in myelination, resulting in the onset of demyelinating disease. Furthermore, it has been noted that humans have significantly greater prefrontal white matter volume than other primate species, which implies greater myelin density. Increased myelin density in humans as a result of a prolonged myelination may therefore structure risk for myelin degeneration and dysfunction. Evolutionary considerations for the role of prolonged cortical myelination as a risk factor for demyelinating disease are particularly pertinent given that genetics and autoimmune deficiency hypotheses fail to explain many cases of demyelinating disease. As has been argued, diseases such as multiple sclerosis cannot be accounted for by autoimmune deficiency alone, but strongly imply the influence of flawed developmental processes in disease pathogenesis. Therefore, the role of the human-specific prolonged period of cortical myelination is an important evolutionary consideration in the pathogenesis of demyelinating disease.
Incidence of demyelinating diseases vary from disorder to disorder. Some conditions, such as Tabes dorsalis appear predominantly in males and begins in mid-life. Optic neuritis on the other hand, occurs preferentially in females typically between the ages of 30 and 35. Other conditions such as multiple sclerosis vary in prevalence depending on the country and population. This condition can appear in children as well as adults.
A hereditary CNS demyelinating disease is a demyelinating central nervous system disease that is primarily due to an inherited genetic condition. (This is in contrast to autoimmune demyelinating conditions, such as multiple sclerosis, or conditions such as central pontine myelinolysis that are associated with acute acquired insult.)
Examples include:
- Alexander disease
- Canavan disease
- Krabbe disease
- leukoencephalopathy with vanishing white matter
- megalencephalic leukoencephalopathy with subcortical cysts
- metachromatic leukodystrophy
- X-linked adrenoleukodystrophy
The list of these diseases depends of the author, but usually are included:
- multiple sclerosis, normally defined by the dissemination in time and space of demyelinating lesions, with two (or sometimes three) clinical presentations:
- Relapsing-Onset multiple sclerosis, the most known and extended variant, normally consisting of two distinct clinical phases (Remitent-Recidivant, RRMS, and Secondary Progressive, SPMS)
- Progressive-Onset MS, most known as Primary progressive MS including a special genetic variant named rapidly progressive multiple sclerosis.
- Optic-spinal MS, or opticospinal, clinical and pathological variant of multiple sclerosis which often include visual symptoms and have a more severe course than typical MS. Though multiple scars (scleroses) are present in CNS, and they comply with the dissemination criteria, and sometimes is classified as clinically definite multiple sclerosis, currently is considered outside the scope of Multiple Sclerosis and inside the scope of Devic's disease, though it is uncertain if this applies to all cases. Also a variant affecting mainly the spinal cord and the cortex has been proposed
- Neuromyelitis optica (NMO), and its associated "spectrum of disorders" (NMOSD), currently considered a common syndrome for at least three separated diseases:, mainly produced by AQP4 autoimmune channelopathy, though other variants exists, some with anti-MOG and some others idiopathic. Some researchers think that there could exist an overlapping between Anti-NMDA receptor encephalitis cases and neuromyelitis optica or acute disseminated encephalomyelitis.
- Anti-MOG associated spectrum, often clinically presented as an anti-MOG autoimmune encephalomyelitis, but can also appear as negative NMO or atypical multiple sclerosis
- CRION (Chronic relapsing inflammatory optic neuritis): A distinct clinical entity from other inflammatory demyelinating diseases including multiple sclerosis (MS), neuromyelitis optica-immunoglobulin G (NMO-IgG) spectrum disease, and idiopathic relapsing optic neuritis.
- Acute disseminated encephalomyelitis or ADEM, a closely related disorder in which a known virus or vaccine triggers autoimmunity against myelin.
- Acute hemorrhagic leukoencephalitis, possibly a variant of Acute disseminated encephalomyelitis
- Balo concentric sclerosis, an unusual presentation of plaques forming concentrenic circles, which can sometimes get better spontaneously.
- Schilder disease or diffuse myelinoclastic sclerosis: is a rare disease that presents clinically as a pseudotumoural demyelinating lesion; and is more common in children.
- Marburg multiple sclerosis, an aggressive form, also known as malignant, fulminant or acute MS.
- Tumefactive multiple sclerosis: lesions whose size is more than 2 cm, with mass effect, oedema and/or ring enhancement
- Solitary sclerosis: This variant has been recently proposed (2012) by Mayo Clinic researches. though it was also reported by other groups more or less at the same time. It is defined as isolated demyelinating lesions which produce a progressive myelopathy similar to primary progressive MS, and is currently considered a synonym for tumefactive multiple sclerosis.
Some inflammatory conditions are associated with the presence of scleroses in the CNS. Optic neuritis (monophasic and recurrent) and Transverse myelitis (monophasic and recurrent)
As MS is an active field for research, the list is not closed or definitive. For example, some diseases like Susac's syndrome (MS has an important vascular component), leukoaraiosis, myalgic encephalomyelitis (aka chronic fatigue syndrome) or autoimmune variants of peripheral neuropathies like Guillain–Barré syndrome or progressive inflammatory neuropathy could be included assuming the autoimmune model. Also Leukodystrophy (which see) and its sub-conditions: Adrenoleukodystrophy and Adrenomyeloneuropathy could be in the list. Venous induced demyelination has also been proposed as a hypothetical MS variant produced by CCSVI.
Recent research has identified some possible new variants, like the possibility to separate primary progressive MS, PPMS, after recent findings seem to point that it is pathologically a very different disease.
Also an OPA1 variant and aKIR4.1 multiple sclerosis variant was reported in 2012 and later reported again, which could be considered a different disease (as Devic disease did before), and can represent up to a 47% of the MS cases. Finally, there exist some reports of an aquaporine-related multiple sclerosis, related to vegetal aquaporine proteins.
Originally found in neuromyelitis optica, this autoantibody has been associated with other conditions. Its current spectrum is as following:
- Seropositive Devic's disease, according to the diagnostic criteria described above
- Limited forms of Devic's disease, such as single or recurrent events of longitudinally extensive myelitis, and bilateral simultaneous or recurrent optic neuritis
- Asian optic-spinal MS - this variant can present brain lesions like MS.
- Longitudinally extensive myelitis or optic neuritis associated with systemic autoimmune disease
- Optic neuritis or myelitis associated with lesions in specific brain areas such as the hypothalamus, periventricular nucleus, and brainstem
- Some cases of tumefactive multiple sclerosis
PML is most common in people with HIV1 infection; prior to the advent of effective antiretroviral therapy, as many as 5% of people with AIDS eventually developed PML. It is unclear why PML occurs more frequently in AIDS than in other immunosuppressive conditions; some research suggests the effects of HIV on brain tissue, or on JCV itself, make JCV more likely to become active in the brain and increase its damaging inflammatory effects.
PML can occur in people on chronic immunosuppressive therapy like corticosteroids, for organ transplant, in people with cancer (such as Hodgkin’s disease, leukemia, or lymphoma) and individuals with autoimmune diseases such as multiple sclerosis, rheumatoid arthritis, psoriasis, sarcoidosis, and systemic lupus erythematosus with or without biological therapies that depress the immune response and allow JC virus reactivation. These therapies include efalizumab, belatacept, rituximab, natalizumab, infliximab, cytotoxic chemotherapy, corticosteroids, and various transplant drugs such as tacrolimus.
The cause of PML is a type of polyomavirus called the JC virus (JCV), after the initials of the person from whose tissue the virus was first successfully cultured. Recent publications indicate 39% to 58% of the general population are seropositive for antibodies to JCV, indicating current or previous infection with the virus. Other publications put the percentage at 70% to 90% of the general population. JCV causes persistent asymptomatic infection in approximately one-third of the adult population, based on viral shedding into the urine from the site of asymptomatic infection in the kidney. The virus causes disease only when the immune system has been severely weakened.
Approximately 2 million people in the world suffer from multiple sclerosis Tumefactive multiple sclerosis cases make up 1 to 2 of every 1000 multiple sclerosis cases. This means that only around 2000 people in the world suffer of tumefactive MS. Of those cases, there is a higher percentage of females affected than males. The median age of onset is 37 years.
As in general MS, there are differences for gender, ethnicity and geographic location. Based on epidemiological studies, there are about 3 times more female MS patients than male patients, indicating a possibility of an increased risk due to hormones. Among different ethnic groups, MS is the most common among Caucasians and seems to have a greater incidence at latitudes above 40° as compared to at the equator. While these associations have been made, it is still unclear how they result in an increased risk of MS onset.
Normally, some measure of improvement appears in a few weeks, but residual signs and disability may persist, sometimes severely.
The disease can be monophasic, i.e. a single episode with permanent remission. However, at least 85% of patients have a relapsing form of the disease with repeated attacks of transverse myelitis and/or optic neuritis. In patients with the monophasic form, the transverse myelitis and optic neuritis occur simultaneously or within days of each other. On the other hand, patients with the relapsing form are more likely to have weeks or months between the initial attacks, and to have better motor recovery after the initial transverse myelitis event. Relapses usually occur early, with about 55% of patients having a relapse in the first year and 90% in the first five years.
It is possible that the relapsing form is related to the antiAQP4+ seropositive status and the monophasic form related to its absence Unlike multiple sclerosis, Devic's disease rarely has a secondary progressive phase in which patients have increasing neurologic decline between attacks without remission. Instead, disabilities arise from the acute attacks.
Approximately 20% of patients with monophasic Devic's disease have permanent visual loss, and 30% have permanent paralysis in one or both legs. Among patients with relapsing Devic's disease, 50% have paralysis or blindness within five years. In some patients (33% in one study), transverse myelitis in the cervical spinal cord resulted in respiratory failure and subsequent death. However, the spectrum of Devic's disease has widened due to improved diagnostic criteria, and the options for treatment have improved; as a result, researchers believe these estimates will be lowered.
Marburg acute multiple sclerosis, also known as Marburg multiple sclerosis or acute fulminant multiple sclerosis, is considered one of the multiple sclerosis borderline diseases, which is a collection of diseases classified by some as MS variants and by others as different diseases. Other diseases in this group are neuromyelitis optica (NMO), Balo concentric sclerosis, and Schilder's disease. The graver course is one form of malignant multiple sclerosis, with patients reaching a significant level of disability in less than five years from their first symptoms, often in a matter of months.
Sometimes Marburg MS is considered a synonym for tumefactive MS, but not for all authors.
The prevalence and incidence of Devic's disease has not been established, partly because the disease is underrecognized and often confused with MS. Devic's disease is more common in women than men, with women comprising over two-thirds of patients and more than 80% of those with the relapsing form of the disease.
A retrospective study found that prevalence of NMOsd was 1.5% inside a random sample of neurological patients, with a MS:NMOsd ratio of 42.7. Among 13 NMOsd patients, 77% had long spinal cord lesions, 38% had severe optic neuritis and 23% had brain or brainstem lesions. Only 56% had clinically definite NMO at follow-up.
According to the Walton Centre in England, "NMO seems to be present across the world unlike MS, which has a higher incidence in temperate climates and white races. Africans and Asians especially in Far East may have a higher risk of NMO, although the exact incidence of this disease is unknown, making specific conclusions difficult". Although many people who have Devic's disease were initially misdiagnosed with MS, 35% of African Americans are often misdiagnosed with MS when they really have NMO.
Devic's disease is more common in Asians than Caucasians. In fact, Asian optic-spinal MS (which constitutes 30% of the cases of MS in Japan) has been suggested to be identical to Devic's disease (differences between optic-spinal and classic MS in Japanese patients). In the indigenous populations of tropical and subtropical regions, MS is rare, but when it appears, it often takes the form of optic-spinal MS.
The majority of Devic's disease patients have no affected relatives, and it is generally regarded as a nonfamilial condition.
In 1982 Lewis et al reported a group of patients with a chronic asymmetrical sensorimotor neuropathy mostly affecting the arms with multifocal involvement of peripheral nerves. Also in 1982 Dyck "et al" reported a response to prednisolone to a condition they referred to as chronic inflammatory demyelinating polyradiculoneuropathy. Parry and Clarke in 1988 described a neuropathy which was later found to be associated with IgM autoantibodies directed against GM1 gangliosides. This latter condition was later termed multifocal motor neuropathy This distinction is important because multifocal motor neuropathy responds to intravenous globulin alone while chronic inflammatory demyelinating polyneuropathy responds to intravenous globulin, steroids and plasma exchanges. It has been suggested that multifocal motor neuropathy is distinct from chronic inflammatory demyelinating polyneuropathy and that Lewis-Summer syndrome is a distinct variant type of chronic inflammatory demyelinating polyneuropathy.
The Lewis-Summer form of this condition is considered a rare disease with only 50 cases reported up to 2004. A total of 90 cases had been reported by 2009
Currently, no research has shown a higher prevalence of most leukodsytrophy types in any one place around the world. There is, however, a higher prevalence of the Canavan disease in the Jewish population for unknown reasons. 1 in 40 individuals of Ashkenazi Jewish descent are carriers of Canavan disease. This estimates to roughly 2.5%. Additionally, due to an autosomal recessive inheritance patterns, there is no significant difference found between affected males and affected females for most types of leukodystrophy including, but not limited to, metachromatic leukodystrophy, Krabbe disease, Canavan disease, and Alexander disease. The one exception to this is any type of leukodystrophy carried on a sex chromosome, such as X-linked adrenoleukodystrophy, which is carried on the X-chromosome. Because of the inheritance pattern of X-linked diseases, males are more often affected by this type of leukodystrophy, although female carriers are often symptomatic, though not as severely so as males. To date, there have been no found cases of a leukodystrophy carried on the Y chromosome.
The prognosis of this disease is very variable and can take three different courses: a monophasic, not remitting;
remitting;
and finally, progressive, with increase in deficits.
Diffuse myelinoclastic sclerosis, sometimes referred to as Schilder's disease, is a very infrequent neurodegenerative disease that presents clinically as pseudotumoural demyelinating lesions, that make its diagnosis difficult. It usually begins in childhood, affecting children between 5 and 14 years old, but cases in adults are possible.
This disease is considered one of the borderline forms of multiple sclerosis because some authors consider them different diseases and others MS variants. Other diseases in this group are neuromyelitis optica (NMO), Balo concentric sclerosis and Marburg multiple sclerosis.
Marburg variant of MS is an acute fulminant demyelinating process which in most cases progresses inexorably to death within 1–2 years. However, there are some reports of Marburg MS reaching stability by three years.
CNS demyelinating autoimmune diseases are autoimmune diseases which primarily affect the central nervous system.
Examples include:
- Diffuse cerebral sclerosis of Schilder
- Acute disseminated encephalomyelitis
- Acute hemorrhagic leukoencephalitis
- Multiple sclerosis (though the cause is unknown, it is sure that immune system is involved)
- Transverse myelitis
- Neuromyelitis optica
Specific types of leukodystrophies include the following with their respective ICD-10 codes when available:
- (E71.3) Adrenomyeloneuropathy
- (E75.2) Alexander disease
- (E75.5) Cerebrotendineous xanthomatosis
- Hereditary CNS demyelinating disease
- (E75.2) Krabbe disease
- (E75.2) Metachromatic leukodystrophy
- (E75.2) Pelizaeus–Merzbacher disease
- (E75.2) Canavan disease
- (G93.49) Leukoencephalopathy with vanishing white matter
- (E71.3) Adrenoleukodystrophy
- (G60.1) Refsum disease
Hereditary motor and sensory neuropathies are relatively common and are often inherited with other neuromuscular conditions, and these co morbidities cause an accelerated progression of the disease.
Most forms HMSN affects males earlier and more severely than females, but others show no predilection to either sex. HMSN affects all ethnic groups. With the most common forms having no racial prediliections, but other recessively inherited forms tend to impact specific ethnic groups. Onset of HMSN in most common in early childhood, with clinical effects occurring before the age of 10, but some symptoms are lifelong and progress slowly. Therefore, these symptoms do not appear until later in life.
Chronic inflammatory demyelinating polyneuropathy, also known as Vidaurri's disease, is believed to be due to immune cells, which normally protect the body from foreign infection, incorrectly attacking the nerves in the body instead. As a result, the affected nerves fail to respond, or respond only weakly, and on occasion, inordinately, to stimuli, causing numbing, tingling, pain, progressive muscle weakness, loss of deep tendon reflexes (areflexia), fatigue, and abnormal sensations. The likelihood of progression of the disease is high.
CIDP is under-recognized and under-treated due to its heterogeneous presentation (both clinical and electrophysiological) and the limitations of clinical, serologic, and electrophysiologic diagnostic criteria. Despite these limitations, early diagnosis and treatment is important in preventing irreversible axonal loss and improving functional recovery.
Lack of awareness and treatment of CIDP is also due to limitations of clinical trials. Although there are stringent research criteria for selecting patients to clinical trials, there are no generally agreed-on clinical diagnostic criteria for CIDP due to its different presentations in symptoms and objective data. Application of the present research criteria to routine clinical practice often miss the diagnosis in a majority of patients, and patients are often left untreated despite progression of their disease.
Megalencephalic leukoencephalopathy with subcortical cysts (MLC, or Van der Knaap disease) is a form of hereditary CNS demyelinating disease. It belongs to a group of disorders called leukodystrophies.
It is associated with MLC1. Van der Knaap disease is named after Dutch neurologist Marjo van der Knaap.
The pathology of the tumefactive demyelinating lesion (TDL) is heterogeneous. In acute phase, the plaques of lesions were characterized by massive demyelination with relatively axonal preservation associated with reactive astrocytosis and infiltration of macrophages. In plaques of chronic lesions, demyelinated lesions with relative axonal preservation and sharply defined margins were major findings. And myelin-laden macrophages accumulate at the edges of plaques and stay inactive
There are several conditions can produce tumefactive lesions. This is known because in some special cases the etiology can be identified. For example, there are some cases of NMO, misidentified as MS and treated with interferon-beta by mistake. Some of these patients developed tumefactive lesions. Anyway, it is important to have into account that NMO itself can also produce them
Some other cases have been found related to viral infection, some others related to NMOSD, others could be paraneoplastic. Also some cases could be related to hormonal treatments
Other possible cause are immunomodulatory combinations. In particular, it has been found that switching from standard MS therapies to fingolimod can trigger tumefactive lesions in some MS patients
While standard multiple sclerosis process has an autoimmune response after the breach of the blood-brain barrier, in tumefactive MS things do not process in the same way, and demyelinating lesions do not always show antibody damage. Subjects with tumefactive multiple sclerosis display elevated levels of choline (Cho)/creatine ratio and increased lactate which is associated with demylinating diseases. Cases also display oligoclonal bands in the cerebrospinal fluid.
The disease is heterogeneous and the lesions do not always comply with the requirements for multiple sclerosis diagnosis (dissemination in time and space). In these cases it is only possible to speak about tumefactive demyelination (TD).
In general, it is accepted that the two main causes of pseudo-tumoral lesions are Marburg multiple sclerosis and acute disseminated encephalomyelitis (ADEM). Tumefactive demyelination of the spinal cord is rare but it has been reported
Damage is not confined to the demyelinating area. Wallerian degeneration outside the lesions has been reported.
Given that some conditions as MS show cortical damage together with the WM damage, there has been interest if this can appear as a secondary damage of the WM. It seems that some researchers claim so.
The Roussy–Lévy syndrome is not a fatal disease and life expectancy is normal. However, due to progressive muscle wasting patients may need supportive orthopaedic equipment or wheelchair assistance.
The causes of polyneuropathy can be divided into hereditary and acquired and are therefore as follows:
- "Inherited" -are hereditary motor neuropathies, Charcot–Marie–Tooth disease, and hereditary neuropathy with liability to pressure palsy
- "Acquired" -are diabetes mellitus, vascular neuropathy, alcohol abuse, and Vitamin B12 deficiency