Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
With liver transplantation, the 5 year survival rate is 74%, which is comparable to patients who undergo liver transplants who do not suffer from hepatopulmonary syndrome.
In medicine, hepatopulmonary syndrome is a syndrome of shortness of breath and hypoxemia (low oxygen levels in the blood of the arteries) caused by vasodilation (broadening of the blood vessels) in the lungs of patients with liver disease. Dyspnea and hypoxemia are worse in the upright position (which is called platypnea and orthodeoxia, respectively).
Biliary atresia seems to affect females slightly more often than males, and Asians and African Americans more often than Caucasians. It is common for only one child in a pair of twins or within the same family to have the condition. There seems to be no link to medications or immunizations given immediately before or during pregnancy. Diabetes during pregnancy particularly during the first trimester seems to predispose to a number of distinct congenital abnormalities in the infant such as sacral agenesis and the syndromic form of biliary atresia.
Asphyxiating thoracic dysplasia or Jeune syndrome is a ciliopathy.It is also known as "Jeune syndrome".
It was described in 1955.
There is an association between taking aspirin for viral illnesses and the development of Reye syndrome, but no animal model of Reye syndrome has been developed in which aspirin causes the condition.
The serious symptoms of Reye syndrome appear to result from damage to cellular mitochondria, at least in the liver, and there are a number of ways that aspirin could cause or exacerbate mitochondrial damage. A potential increased risk of developing Reye syndrome is one of the main reasons that aspirin has not been recommended for use in children and teenagers, the age group for which the risk of lasting serious effects is highest.
No research has found a definitive cause of Reye syndrome, and association with aspirin has been shown through epidemiological studies. The diagnosis of "Reye Syndrome" greatly decreased in the 1980s, when genetic testing for inborn errors of metabolism was becoming available in developed countries. A retrospective study of 49 survivors of cases diagnosed as "Reye's Syndrome" showed that the majority of the surviving patients had various metabolic disorders, particularly a fatty-acid oxidation disorder medium-chain acyl-CoA dehydrogenase deficiency.
In some countries, oral mouthcare product Bonjela (not the form specifically designed for teething) has labeling cautioning against its use in children, given its salicylate content. There have been no cases of Reye syndrome following its use, and the measure is a precaution. Other medications containing salicylates are often similarly labeled as a precaution.
The Centers for Disease Control and Prevention (CDC), the U.S. Surgeon General, the American Academy of Pediatrics (AAP) and the Food and Drug Administration (FDA) recommend that aspirin and combination products containing aspirin not be given to children under 19 years of age during episodes of fever-causing illnesses. Hence, in the United States, it is advised that the opinion of a doctor or pharmacist should be obtained before anyone under 19 years of age is given any medication containing aspirin (also known on some medicine labels as acetylsalicylate, salicylate, acetylsalicylic acid, ASA, or salicylic acid).
Current advice in the United Kingdom by the Committee on Safety of Medicines is that aspirin should not be given to those under the age of 16 years, unless specifically indicated in Kawasaki disease or in the prevention of blood clot formation.
Jeune syndrome is a rare genetic disorder that affects the way a child’s cartilage and bones develop. It begins before the child is born. Jeune syndrome affects the child's rib cage, pelvis, arms and legs.
Usually, problems with the rib cage cause the most serious health problems for children with Jeune syndrome. Their rib cages (thorax) are smaller and narrower than usual. This can keep the child's lungs from developing fully or expanding when the child inhales. The child may breathe rapidly and shallowly. They may have trouble breathing when they have an upper or lower respiratory infection, like pneumonia.
Breathing trouble can range from mild to severe. In some children, it is not noticeable, aside from fast breathing. In most children, breathing problems are serious. About 60% to 70% of children with this condition die from respiratory failure as babies or young children.
Children with Jeune syndrome who survive often develop problems with their kidneys, another serious feature of Jeune syndrome. Over time they may experience renal failure.
As a result, few children with Jeune syndrome live into their teen years.
Children with Jeune syndrome have a form of dwarfism. They are short in stature, and their arms and legs are shorter than most people’s.
Another name for Jeune syndrome is asphyxiating thoracic dystrophy. This diagnosis is grouped with other chest problems called thoracic insufficiency syndrome (TIS).
Although the exact etiopathogenetic mechanism of Ballantyne syndrome remains unknown, several authors have reported raised uric acid levels, anemia, and low hematocrit without hemolysis.
Documented cases of Reye syndrome in adults are rare. The recovery of adults with the syndrome is generally complete, with liver and brain function returning to normal within two weeks of onset. In children, however, mild to severe permanent brain damage is possible, especially in infants. Over thirty percent of the cases reported in the United States from 1981 through 1997 resulted in fatality.
In most cases Ballantyne syndrome causes fetal or neonatal death and in contrast, maternal involvement is limited at the most to preeclampsia.
Respiratory complications are often cause of death in early infancy.
Some cases of biliary atresia may result from exposure to aflatoxin B1, and to a lesser extent aflatoxin B2 during late pregnancy. Intact maternal detoxification protects baby during intrauterine life, yet after delivery the baby struggles with the aflatoxin in its blood and liver. Moreover, the baby feeds aflatoxin M1 from its mom, as aflatoxin M1 is the detoxification product of aflatoxin B1. It is a milder toxin that causes cholangitis in the baby.
There are isolated examples of biliary atresia in animals. For instance, lambs born to sheep grazing on land contaminated with a weed (Red Crumbweed) developed biliary atresia at certain times. The plants were later found to contain a toxin, now called biliatresone Studies are ongoing to determine whether there is a link between human cases of biliary atresia and toxins such as biliatresone. There are some indications that a metabolite of certain human gut bacteria may be similar to biliatresone.
Roberts syndrome is an extremely rare condition that only affects about 150 reported individuals. Although there have been only about 150 reported cases, the affected group is quite diverse and spread worldwide. Parental consanguinity (parents are closely related) is common with this genetic disorder. The frequency of Roberts syndrome carriers is unknown.
The first gene that could cause the syndrome is described recently and is called NF1X (chromosome 19: 19p13.1).
Perlman syndrome is a rare disease with an estimated incidence of less than 1 in 1,000,000. As of 2008, less than 30 patients had ever been reported in the world literature.
Bloom syndrome is an extremely rare disorder in most populations and the frequency of the disease has not been measured in most populations. However, the disorder is relatively more common amongst people of Central and Eastern European (Ashkenazi) Jewish background. Approximately 1 in 48,000 Ashkenazi Jews are affected by Bloom syndrome, who account for about one-third of affected individuals worldwide.
More than 80% of children with Patau syndrome die within the first year of life. Children with the mosaic variation are usually affected to a lesser extent. In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively.
The incidence of Fraser syndrome is 0.043 per 10,000 live born infants and 1.1 in 10,000 stillbirths, making it a rare syndrome.
Mutations in the "TBX5" gene cause Holt–Oram syndrome. The "TBX5" gene plays a role in the development of the heart and upper limbs before birth. In particular, this gene appears to be important for the process that divides the developing heart into four chambers (cardiac septation). The "TBX5" gene also appears to play a critical role in regulating the development of bones in the arm and hand. Mutations in this gene probably disrupt the development of the heart and upper limbs, leading to the characteristic features of Holt–Oram syndrome.
Holt–Oram syndrome is considered an autosomal dominant disorder. This means the defective gene is located on an autosome, and only one copy of the gene, inherited from a parent who has the disorder, is sufficient to cause the disorder.
Other cases of Holt–Oram syndrome are sporadic, and result from new mutations in the TBX5 gene that occur in people with no history of the disorder in their family. Holt–Oram syndrome is estimated to affect 1 in 100,000 individuals.In some cases, Holt-Oram has a multiplier effect when passed on generation to generation. An affected child of an affected parent will likely face greater challenges than the parent did. In rare cases, some carriers are unable to reproduce at all due to the severity of the condition.
Males are twice as likely as females to have this characteristic, and it tends to run in families. In its non-symptomatic form, it is more common among Asians and Native Americans than among other populations, and in some families there is a tendency to inherit the condition unilaterally, that is, on one hand only.
The presence of a single transverse palmar crease can be, but is not always, a symptom associated with abnormal medical conditions, such as fetal alcohol syndrome, or with genetic chromosomal abnormalities, including Down Syndrome (chromosome 21), cri du chat syndrome (chromosome 5), Klinefelter syndrome, Wolf-Hirschhorn Syndrome, Noonan syndrome (chromosome 12), Patau syndrome (chromosome 13), IDIC 15/Dup15q (chromosome 15), Edward's syndrome (chromosome 18), and Aarskog-Scott syndrome (X-linked recessive), or autosomal recessive disorder, such as Leaukocyte adhesion deficiency-2 (LAD2). A unilateral single palmar crease was also reported in a case of chromosome 9 mutation causing Nevoid basal cell carcinoma syndrome and Robinow syndrome. It is also sometimes found on the hand of the affected side of patients with Poland Syndrome, and craniosynostosis.
As there is no known cure, Loeys–Dietz syndrome is a lifelong condition. Due to the high risk of death from aortic aneurysm rupture, patients should be followed closely to monitor aneurysm formation, which can then be corrected with interventional radiology or vascular surgery.
Previous research in laboratory mice has suggested that the angiotensin II receptor antagonist losartan, which appears to block TGF-beta activity, can slow or halt the formation of aortic aneurysms in Marfan syndrome. A large clinical trial sponsored by the National Institutes of Health is currently underway to explore the use of losartan to prevent aneurysms in Marfan syndrome patients. Both Marfan syndrome and Loeys–Dietz syndrome are associated with increased TGF-beta signaling in the vessel wall. Therefore, losartan also holds promise for the treatment of Loeys–Dietz syndrome. In those patients in which losartan is not halting the growth of the aorta, irbesartan has been shown to work and is currently also being studied and prescribed for some patients with this condition.
If an increased heart rate is present, atenolol is sometimes prescribed to reduce the heart rate to prevent any extra pressure on the tissue of the aorta. Likewise, strenuous physical activity is discouraged in patients, especially weight lifting and contact sports.
The prognosis for patients diagnosed with Timothy syndrome is very poor. Of 17 children analyzed in one study, 10 died at an average age of 2.5 years. Of those that did survive, 3 were diagnosed with autism, one with an autism spectrum disorder, and the last had severe delays in language development. One patient with atypical Timothy syndrome was largely normal with the exception of heart arrhythmia. Likewise, the mother of two Timothy syndrome patients also carried the mutation but lacked any obvious phenotype. In both of these cases, however, the lack of severity of the disorder was due to mosaicism.
At this time, there are no other phenotypes (observable expressions of a gene) that have been discovered for mutations in the ESCO2 gene.
In the United States, sarcoidosis has a prevalence of approximately 10 cases per 100,000 whites and 36 cases per 100,000 blacks. Heerfordt syndrome is present in 4.1–5.6% of those with sarcoidosis.
Several genetic causes of Loeys–Dietz syndrome have been identified. A "de novo" mutation in TGFB3, a ligand of the TGF ß pathway, was identified in an individual with a syndrome presenting partially overlapping symptoms with Marfan Syndrome and Loeys-Dietz Syndrome.
Because oculocerebrorenal syndrome is an X-linked recessive condition, the disease develops mostly in men with very rare occurrences in women, while women are carriers of the disease; it has an estimated prevalence of 1 in 500,000 people. Boys with Lowe syndrome are born with cataracts in both eyes, glaucoma is present in about half of the individuals with Lowe syndrome, though usually not at birth. While not present at birth, many affected boys develop kidney problems at about one year of age. Renal pathology is characterized by an abnormal loss of certain substances into the urine, including bicarbonate, sodium, potassium, amino acids, organic acids, albumin, calcium and L-carnitine, this problem, is known as Fanconi-type renal tubular dysfunction.