Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Estimates of the rate of HCV vertical transmission range from 2–8%; a 2014 systematic review and meta-analysis found the risk to be 5.8% in HCV-positive, HIV-negative women. The same study found the risk of vertical transmission to be 10.8% in HCV-positive, HIV-positive women. Other studies have found the risk of vertical transmission to be as high as 44% among HIV-positive women. The risk of vertical transmission is higher when the virus is detectable in the mother's blood.
Evidence does not indicate that mode of delivery (i.e. vaginal vs. cesarean) has an effect on vertical transmission.
For women who are HCV-positive and HIV-negative, breastfeeding is safe; however, CDC guidelines suggest avoiding breastfeeding if a woman's nipples are "cracked or bleeding" to reduce the risk of transmission.
Pregnant women who contract HEV are at significant risk of developing fulminant hepatitis with maternal mortality rates as high as 20–30%, most commonly in the third trimester . A 2016 systematic review and meta-analysis of 47 studies that included 3968 people found maternal case-fatality rates (CFR) of 20.8% and fetal CFR of 34.2%; among women who developed fulminant hepatic failure, CFR was 61.2%.
Compared with adults, infection in children is much less well understood. Worldwide the prevalence of hepatitis C virus infection in pregnant women and children has been estimated to 1–8% and 0.05–5% respectively. The vertical transmission rate has been estimated to be 3–5% and there is a high rate of spontaneous clearance (25–50%) in the children. Higher rates have been reported for both vertical transmission (18%, 6–36% and 41%). and prevalence in children (15%).
In developed countries transmission around the time of birth is now the leading cause of HCV infection. In the absence of virus in the mother's blood transmission seems to be rare. Factors associated with an increased rate of infection include membrane rupture of longer than 6 hours before delivery and procedures exposing the infant to maternal blood. Cesarean sections are not recommended. Breastfeeding is considered safe if the nipples are not damaged. Infection around the time of birth in one child does not increase the risk in a subsequent pregnancy. All genotypes appear to have the same risk of transmission.
HCV infection is frequently found in children who have previously been presumed to have non-A, non-B hepatitis and cryptogenic liver disease. The presentation in childhood may be asymptomatic or with elevated liver function tests. While infection is commonly asymptomatic both cirrhosis with liver failure and hepatocellular carcinoma may occur in childhood.
Mother-to-child transmission of occurs in less than 10% of pregnancies. There are no measures that alter this risk. It is not clear when transmission occurs during pregnancy, but it may occur both during gestation and at delivery. A long labor is associated with a greater risk of transmission. There is no evidence that breast-feeding spreads HCV; however, to be cautious, an infected mother is advised to avoid breastfeeding if her nipples are cracked and bleeding, or if her viral loads are high.
virus DNA persists in the body after infection, and in some people the disease recurs. Although rare, reactivation is seen most often following alcohol or drug use, or in people with impaired immunity. HBV goes through cycles of replication and non-replication. Approximately 50% of overt carriers experience acute reactivation. Males with baseline ALT of 200 UL/L are three times more likely to develop a reactivation than people with lower levels. Although reactivation can occur spontaneously, people who undergo chemotherapy have a higher risk. Immunosuppressive drugs favor increased HBV replication while inhibiting cytotoxic T cell function in the liver. The risk of reactivation varies depending on the serological profile; those with detectable HBsAg in their blood are at the greatest risk, but those with only antibodies to the core antigen are also at risk. The presence of antibodies to the surface antigen, which are considered to be a marker of immunity, does not preclude reactivation. Treatment with prophylactic antiviral drugs can prevent the serious morbidity associated with HBV disease reactivation.
Globally, symptomatic HAV infections are believed to occur in around 1.4 million people a year. About 114 million infections (asymptomatic and symptomatic) occurred all together in 2015. Acute hepatitis A resulted in 11,200 deaths in 2015. Developed countries have low circulating levels of hepatovirus A, while developing countries have higher levels of circulation. Most adolescents and adults in developing countries have already had the disease, thus are immune. Adults in midlevel countries may be at risk of disease with the potential of being exposed.
virus infection may be either acute (self-limiting) or chronic (long-standing). Persons with self-limiting infection clear the infection spontaneously within weeks to months.
Children are less likely than adults to clear the infection. More than 95% of people who become infected as adults or older children will stage a full recovery and develop protective immunity to the virus. However, this drops to 30% for younger children, and only 5% of newborns that acquire the infection from their mother at birth will clear the infection. This population has a 40% lifetime risk of death from cirrhosis or hepatocellular carcinoma. Of those infected between the age of one to six, 70% will clear the infection.
Hepatitis D (HDV) can occur only with a concomitant infection, because HDV uses the HBV surface antigen to form a capsid. Co-infection with hepatitis D increases the risk of liver cirrhosis and liver cancer. Polyarteritis nodosa is more common in people with infection.
In the United States in 1991, the mortality rate for hepatitis A was estimated to be 0.015% for the general population, but ranged up to 1.8 -2.1 % for those aged 50 and over which were hospitalized with icteric hepatitis. The risk of death from acute liver failure following HAV infection increases with age and when the person has underlying chronic liver disease.
Young children who are infected with hepatitis A typically have a milder form of the disease, usually lasting 1–3 weeks, whereas adults tend to experience a much more severe form of the disease.
"Hepatitis B" is caused by hepatitis B virus, a hepadnavirus that can cause both acute and chronic hepatitis. Chronic hepatitis develops in the 15% of adults who are unable to eliminate the virus after an initial infection. Identified methods of transmission include blood (blood transfusion, now rare), unsanitary tattoos, sexually (through sexual intercourse or through contact with blood or bodily fluids), or via mother to child by breast feeding (minimal evidence of transplacental crossing). However, in about half of cases the source of infection cannot be determined. Blood contact can occur by sharing syringes in intravenous drug use, shaving accessories such as razor blades, or touching wounds on infected persons. Needle-exchange programmes have been created in many countries as a form of prevention.
Patients with chronic hepatitis B have antibodies against hepatitis B, but these antibodies are not enough to clear the infection of the affected liver cells. The continued production of virus combined with antibodies is a likely cause of the immune complex disease seen in these patients. A vaccine is available that will prevent infection from hepatitis B for life. Hepatitis B infections result in 500,000 to 1,200,000 deaths per year worldwide due to the complications of chronic hepatitis, cirrhosis, and hepatocellular carcinoma. Hepatitis B is endemic in a number of (mainly South-East Asian) countries, making cirrhosis and hepatocellular carcinoma big killers. There are six treatment options approved by the U.S. Food and Drug Administration (FDA) available for persons with a chronic hepatitis B infection: alpha-interferon, pegylated interferon, adefovir, entecavir, telbivudine, and lamivudine. About 65% of persons on treatment achieve a sustained response.
The most common cause of hepatitis is viral. Although they are classified under the disease hepatitis, these viruses are not all related.
The routes of transmission of hepatitis D are similar to those for hepatitis B. Infection is largely restricted to persons at high risk of hepatitis B infection, particularly injecting drug users and persons receiving clotting factor concentrates. Worldwide more than 15 million people are co-infected. HDV is rare in most developed countries, and is mostly associated with intravenous drug use. However, HDV is much more common in the immediate Mediterranean region, sub-Saharan Africa, the Middle East, and the northern part of South America. In all, about 20 million people may be infected with HDV.
The hepatitis E virus causes around 20 million infections a year. These result in around three million acute illnesses and as of 2010, 57,000 deaths annually. It is particularly dangerous for pregnant women, who can develop an acute form of the disease that is lethal in 30% of cases or more. HEV is a major cause of illness and of death in the developing world and disproportionate cause of deaths among pregnant women. Hepatitis E is endemic in Central Asia, while Central America and the Middle East have reported outbreaks.
Sanitation is the most important measure in prevention of hepatitis E; this consists of proper treatment and disposal of human waste, higher standards for public water supplies, improved personal hygiene procedures, and sanitary food preparation. Thus, prevention strategies of this disease are similar to those of many others that plague developing nations.
The vaccine for hepatitis B protects against hepatitis D virus because of the latter's dependence on the presence of hepatitis B virus for it to replicate.
Latest evidence suggests that Pegylated interferon alpha is effective in reducing the viral load and the effect of the disease during the time the drug is given, but the benefit generally stops if the drug is discontinued. The efficiency of the pegylated interferon treatment does not usually exceed ~20%.
The drug myrcludex B, which inhibits virus entry into hepatocytes, is in clinical trials .
Infants with neonatal hepatitis caused by the cytomegalovirus, rubella or the hepatitis A, B, and C viruses may transmit the infection to others who come in close contact with the infant.
These infected infants should not come into contact with pregnant women because of the possibility that the woman will transmit the virus to her unborn child.
In the 80 percent of the cases where there is no virus identified as the cause.
Sixty percent of mothers of preterm infants are infected with cytomegalovirus (CMV). Infection is asymptomatic in most instances but 9% to 12% of postnatally infected low birth weight, preterm infants have severe, sepsis-like infection. CMV infection duration can be long and result in pneumonitis in association with fibrosis. CMV infection in infants has an unexpected effect on the white blood cells of the immune system causing them to prematurely age. This leads to a reduced immune response similar to that found in the elderly.
Human immunodeficiency virus type I (HIV) infection can occur during labor and delivery, in utero through mother-to-child transmission or postnatally by way of breastfeeding. Transmission can occur during pregnancy, delivery or breastfeeding. Most transmission occurs during delivery. In women with low detectable levels of the virus, the incidence of transmission is lower. Transmission risk can be reduced by:
- providing antiretroviral therapy during pregnancy and immediately after birth
- delivery by caesarean section
- not breastfeeding
- antiretroviral prophylaxis in infants born to mothers with HIV.
A low number of women whose HIV status are unknown until after the birth, do not benefit from interventions that could help lower the risk of mother-to-child HIV transmission.
Babies can also become infected by their mothers during birth. Some infectious agents may be transmitted to the embryo or fetus in the uterus, while passing through the birth canal, or even shortly after birth. The distinction is important because when transmission is primarily during or after birth, medical intervention can help prevent infections in the infant.
During birth, babies are exposed to maternal blood, body fluids, and to the maternal genital tract without the placental barrier intervening. Because of this, blood-borne microorganisms (hepatitis B, HIV), organisms associated with sexually transmitted disease (e.g., "Neisseria gonorrhoeae" and "Chlamydia trachomatis"), and normal fauna of the genitourinary tract (e.g., "Candida albicans") are among those commonly seen in infection of newborns.
The embryo and fetus have little or no immune function. They depend on the immune function of their mother. Several pathogens can cross the placenta and cause (perinatal) infection. Often, microorganisms that produce minor illness in the mother are very dangerous for the developing embryo or fetus. This can result in spontaneous abortion or major developmental disorders. For many infections, the baby is more at risk at particular stages of pregnancy. Problems related to perinatal infection are not always directly noticeable.