Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In those with cirrhosis, the risk of developing hepatic encephalopathy is 20% per year, and at any time about 30–45% of people with cirrhosis exhibit evidence of overt encephalopathy. The prevalence of minimal hepatic encephalopathy detectable on formal neuropsychological testing is 60–80%; this increases the likelihood of developing overt encephalopathy in the future. Once hepatic encephalopathy has developed, the prognosis is determined largely by other markers of liver failure, such as the levels of albumin (a protein produced by the liver), the prothrombin time (a test of coagulation, which relies on proteins produced in the liver), the presence of ascites and the level of bilirubin (a breakdown product of hemoglobin which is conjugated and excreted by the liver). Together with the severity of encephalopathy, these markers have been incorporated into the Child-Pugh score; this score determines the one- and two-year survival and may assist in a decision to offer liver transplantation.
In acute liver failure, the development of severe encephalopathy strongly predicts short-term mortality, and is almost as important as the nature of the underlying cause of the liver failure in determining the prognosis. Historically, widely used criteria for offering liver transplantation, such as King's College Criteria, are of limited use and recent guidelines discourage excessive reliance on these criteria. The occurrence of hepatic encephalopathy in people with Wilson's disease (hereditary copper accumulation) and mushroom poisoning indicates an urgent need for a liver transplant.
In the past, it was thought that consumption of protein even at normal levels increased the risk of hepatic encephalopathy. This has been shown to be incorrect. Furthermore, many people with chronic liver disease are malnourished and require adequate protein to maintain a stable body weight. A diet with adequate protein and energy is therefore recommended.
Dietary supplementation with branched-chain amino acids has shown improvement of encephalopathy and other complications of cirrhosis. Some studies have shown benefit of administration of probiotics ("healthy bacteria").
The prognosis for people with ALD depends on the liver histology as well as cofactors, such as concomitant chronic viral hepatitis. Among patients with alcoholic hepatitis, progression to liver cirrhosis occurs at 10–20% per year, and 70% will eventually develop cirrhosis. Despite cessation of alcohol use, only 10% will have normalization of histology and serum liver enzyme levels. As previously noted, the MDF has been used to predict short-term mortality (i.e., MDF ≥ 32 associated with spontaneous survival of 50–65% without corticosteroid therapy, and MDF 11) and 90-day (MELD > 21) mortality. Liver cirrhosis develops in 6–14% of those who consume more than 60–80 g of alcohol daily for men and more than 20 g daily for women. Even in those who drink more than 120 g daily, only 13.5% will suffer serious alcohol-related liver injury. Nevertheless, alcohol-related mortality was the third leading cause of death in 2003 in the United States. Worldwide mortality is estimated to be 150,000 per year.
Common causes for acute liver failure are paracetamol (acetaminophen) overdose, idiosyncratic reaction to medication (e.g. tetracycline, troglitazone), excessive alcohol consumption (severe alcoholic hepatitis), viral hepatitis (hepatitis A or B — it is extremely uncommon in hepatitis C), acute fatty liver of pregnancy, and idiopathic (without an obvious cause). Reye syndrome is acute liver failure in a child with a viral infection (e.g. chickenpox); it appears that aspirin use may play a significant role. Wilson's disease (hereditary copper accumulation) may infrequently present with acute liver failure.
Hyponatraemia is an almost universal finding due to water retention and a shift in intracellular sodium transport from inhibition of Na/K ATPase. Hypoglycaemia (due to depleted hepatic glycogen store and hyperinsulinaemia), hypokalaemia, hypophosphataemia and Metabolic alkalosis are often present, independent of renal function. Lactic acidosis occurs predominantly in paracetomol (also known as acetaminophen) overdose.
Acute fatty liver of pregnancy is a rare condition and occurs in approximately one in 7,000 to one in 15,000 pregnancies. The mortality from acute fatty liver of pregnancy has been reduced significantly to 18%, and is now related primarily to complications, particularly DIC (Disseminated Intravascular Coagulation) and infections. After delivery, most mothers do well, as the stimulus for fatty acid overload is removed. The disease can recur in future pregnancies, with a calculated genetic chance of 25%; the actual rate is lower, however. Mortality of the foetus has also diminished significantly, but still remains 23%, and may be related to the need for premature delivery.
Key prevention strategies for cirrhosis are population-wide interventions to reduce alcohol intake (through pricing strategies, public health campaigns, and personal counseling), programs to reduce the transmission of viral hepatitis, and screening of relatives of people with hereditary liver diseases.
Little is known about factors affecting cirrhosis risk and progression. Research has suggested that coffee consumption appears to help protect against cirrhosis.
Hepatocellular carcinoma is a primary liver cancer that is more common in people with cirrhosis. People with known cirrhosis are often screened intermittently for early signs of this tumor, and screening has been shown to improve outcomes.
In most cases, liver function will return to normal if the offending drug is stopped early. Additionally, the patient may require supportive treatment. In acetaminophen toxicity, however, the initial insult can be fatal. Fulminant hepatic failure from drug-induced hepatotoxicity may require liver transplantation. In the past, glucocorticoids in allergic features and ursodeoxycholic acid in cholestatic cases had been used, but there is no good evidence to support their effectiveness.
An elevation in serum bilirubin level of more than 2 times ULN with associated transaminase rise is an ominous sign. This indicates severe hepatotoxicity and is likely to lead to mortality in 10% to 15% of patients, especially if the offending drug is not stopped (Hy's Law). This is because it requires significant damage to the liver to impair bilirubin excretion, hence minor impairment (in the absence of biliary obstruction or Gilbert syndrome) would not lead to jaundice. Other poor predictors of outcome are old age, female sex, high AST.
The risk factors presently known are:
- Quantity of alcohol taken: Consumption of 60–80g per day (14g is considered one standard drink in the USA, i.e., 1.5 fl oz hard liquor, 5 fl oz wine, 12 fl oz beer; drinking a six-pack of beer daily would be in the middle of the range) for 20 years or more in men, or 20g/day for women significantly increases the risk of hepatitis and fibrosis by 7% to 47%,
- Pattern of drinking: Drinking outside of meal times increases up to 3 times the risk of alcoholic liver disease.
- Gender: Women are twice as susceptible to alcohol-related liver disease, and may develop alcoholic liver disease with shorter durations and doses of chronic consumption. The lesser amount of alcohol dehydrogenase secreted in the gut, higher proportion of body fat in women, and changes in fat absorption due to the menstrual cycle may explain this phenomenon.
- Hepatitis C infection: A concomitant hepatitis C infection significantly accelerates the process of liver injury.
- Genetic factors: Genetic factors predispose both to alcoholism and to alcoholic liver disease. Both monozygotic twins are more likely to be alcoholics and to develop liver cirrhosis than both dizygotic twins. Polymorphisms in the enzymes involved in the metabolism of alcohol, such as ADH, ALDH, CYP4502E1, mitochondrial dysfunction, and cytokine polymorphism may partly explain this genetic component. However, no specific polymorphisms have currently been firmly linked to alcoholic liver disease.
- Iron overload (Hemochromatosis)
- Diet: Malnutrition, particularly vitamin A and E deficiencies, can worsen alcohol-induced liver damage by preventing regeneration of hepatocytes. This is particularly a concern as alcoholics are usually malnourished because of a poor diet, anorexia, and encephalopathy.
Glucocorticoids are so named due to their effect on the carbohydrate mechanism. They promote glycogen storage in the liver. An enlarged liver is a rare side-effect of long-term steroid use in children. The classical effect of prolonged use both in adult and paediatric population is steatosis.
"Acute on chronic liver failure" is said to exist when someone with chronic liver disease develops features of liver failure. A number of underlying causes may precipitate this, such as alcohol misuse or infection. People with ACLF can be critically ill and require intensive care treatment, and occasionally a liver transplant. Mortality with treatment is 50%.
Chemotherapy medication, for example, fludarabine can cause a
permanent severe global encephalopathy. Ifosfamide can cause
a severe encephalopathy (but it can be reversible with stop using the drug and the use of methylene blue). Bevacizumab and other anti–vascular endothelial growth factor medication can cause posterior reversible encephalopathy syndrome.
There are many types of encephalopathy. Some examples include:
- Mitochondrial encephalopathy: Metabolic disorder caused by dysfunction of mitochondrial DNA. Can affect many body systems, particularly the brain and nervous system.
- Glycine encephalopathy: A genetic metabolic disorder involving excess production of glycine.
- Hepatic encephalopathy: Arising from advanced cirrhosis of the liver.
- Hypoxic ischemic encephalopathy: Permanent or transitory encephalopathy arising from severely reduced oxygen delivery to the brain.
- Static encephalopathy: Unchanging, or permanent, brain damage.
- Uremic encephalopathy: Arising from high levels of toxins normally cleared by the kidneys—rare where dialysis is readily available.
- Wernicke's encephalopathy: Arising from thiamine (B) deficiency, usually in the setting of alcoholism.
- Hashimoto's encephalopathy: Arising from an auto-immune disorder.
- Hypertensive encephalopathy: Arising from acutely increased blood pressure.
- Chronic traumatic encephalopathy: Progressive degenerative disease associated with multiple concussions and other forms of brain injury.
- Lyme encephalopathy: Arising from Lyme disease bacteria, including "Borrelia burgdorferi".
- Toxic encephalopathy: A form of encephalopathy caused by chemicals, often resulting in permanent brain damage.
- Toxic-Metabolic encephalopathy: A catch-all for brain dysfunction caused by infection, organ failure, or intoxication.
- Transmissible spongiform encephalopathy: A collection of diseases all caused by prions, and characterized by "spongy" brain tissue (riddled with holes), impaired locomotion or coordination, and a 100% mortality rate. Includes bovine spongiform encephalopathy (mad cow disease), scrapie, and kuru among others.
- Neonatal encephalopathy (hypoxic-ischemic encephalopathy): An obstetric form, often occurring due to lack of oxygen in bloodflow to brain-tissue of the fetus during labour or delivery.
- Salmonella encephalopathy: A form of encephalopathy caused by food poisoning (especially out of peanuts and rotten meat) often resulting in permanent brain damage and nervous system disorders.
- Encephalomyopathy: A combination of encephalopathy and myopathy. Causes may include mitochondrial disease (particularly MELAS) or chronic hypophosphatemia, as may occur in cystinosis.
- Creutzfeldt–Jakob disease (CJD; transmissible spongiform encephalopathy).
- HIV encephalopathy (encephalopathy associated with HIV infection and AIDS, characterized by atrophy and ill-defined white matter hyperintensity).
- Sepsis-associated encephalopathy (this type can occur in the setting of apparent sepsis, trauma, severe burns, or trauma, even without clear identification of an infection).
- Epileptic encephalopathies:
- Early infantile epileptic encephalopathy (acquired or congenital abnormal cortical development).
- Early myoclonic epileptic encephalopathy (possibly due to metabolic disorders).
Chronic liver failure usually occurs in the context of cirrhosis, itself potentially the result of many possible causes, such as excessive alcohol intake, hepatitis B or C, autoimmune, hereditary and metabolic causes (such as iron or copper overload, steatohepatitis or non-alcoholic fatty liver disease).
Mild disease has a risk of death of about 10% while moderate disease has a risk of death of 20%. When it occurs as a result of bone marrow transplant and multiorgan failure is present, the risk of death is greater than 80%.
Ischemic hepatitis can be caused by a number of reasons (that lead to low blood pressure) including:
- Abnormal heart rhythm
- Heart failure
- Infection
- Profuse bleeding
- Blood clots (hepatic artery after surgery)
Alcoholic hepatitis is hepatitis (inflammation of the liver) due to excessive intake of alcohol. It is usually found in association with fatty liver, an early stage of alcoholic liver disease, and may contribute to the progression of fibrosis, leading to cirrhosis. Signs and symptoms of alcoholic hepatitis include jaundice, ascites (fluid accumulation in the abdominal cavity), fatigue and hepatic encephalopathy (brain dysfunction due to liver failure). Mild cases are self-limiting, but severe cases have a high risk of death. Severe cases may be treated with glucocorticoids.
Acute fatty liver of pregnancy is best treated in a centre with expertise in hepatology, high-risk obstetrics, maternal-fetal medicine and neonatology. The physicians who treat this condition will often consult with experts in liver transplantation in severe cases. Admission to the intensive care unit is recommended.
Initial treatment involves supportive management with intravenous fluids, intravenous glucose and blood products, including fresh frozen plasma and cryoprecipitate to correct DIC. The foetus should be monitored with cardiotocography. After the mother is stabilized, arrangements are usually made for delivery. This may occur vaginally, but, in cases of severe bleeding or compromise of the mother's status, a caesarian section may be needed. Often AFLP is not diagnosed until the mother and baby are in trouble, so it is most likely that an emergency C-section is needed.
The complications of acute fatty liver of pregnancy may require treatment after delivery, especially if pancreatitis occurs. Liver transplantation is rarely required for treatment of the condition, but may be needed for mothers with severe DIC, those with rupture of the liver, or those with severe encephalopathy.
The mechanism of ischemic hepatitis depends on the etiopathogenetic origin, be it a cardiomyopathy, cardiac tamponade, trauma, or bleeding. Usually ischemic hepatitis reveals itself after a hypotensive event with increase levels of aminotransferase, hypotension is thought to be one of the primary insults in ischemic hepatitis.
This includes mostly drug-induced hepatotoxicity, (DILI) which may generate many different patterns over liver disease, including
- cholestasis
- necrosis
- acute hepatitis and chronic hepatitis of different forms,
- cirrhosis
- Effects of Acetaminophen (Tylenol)
- other rare disorders like focal nodular hyperplasia, Hepatic fibrosis, peliosis hepatis and veno-occlusive disease.
Liver damage is part of Reye's syndrome.
Alcoholic hepatitis is characterized by myriad symptoms, which may include feeling unwell, enlargement of the liver, development of fluid in the abdomen (ascites), and modest elevation of liver enzyme levels (as determined by liver function tests). Alcoholic hepatitis can vary from mild with only liver enzyme elevation to severe liver inflammation with development of jaundice, prolonged prothrombin time, and even liver failure. Severe cases are characterized by either obtundation (dulled consciousness) or the combination of elevated bilirubin levels and prolonged prothrombin time; the mortality rate in both severe categories is 50% within 30 days of onset.
Alcoholic hepatitis is distinct from cirrhosis caused by long-term alcohol consumption. Alcoholic hepatitis can occur in patients with chronic alcoholic liver disease and alcoholic cirrhosis. Alcoholic hepatitis by itself does not lead to cirrhosis, but cirrhosis is more common in patients with long term alcohol consumption. Some alcoholics develop acute hepatitis as an inflammatory reaction to the cells affected by fatty change. This is not directly related to the dose of alcohol. Some people seem more prone to this reaction than others. This is called alcoholic steatonecrosis and the inflammation probably predisposes to liver fibrosis.
Malignant neoplasm of liver and intrahepatic bile ducts. The most frequent forms are metastatic malignant neoplasm of liver)
- liver cell carcinoma
- hepatocellular carcinoma
- hepatoma
- cholangiocarcinoma
- hepatoblastoma
- angiosarcoma of liver
- Kupffer cell sarcoma
- other sarcomas of liver
Benign neoplasm of liver include hepatic hemangiomas, hepatic adenomas, and focal nodular hyperplasia (FNH).
Possible causes:
- pregnancy
- androgens
- birth control pills
- antibiotics (such as TMP/SMX)
- abdominal mass (e.g. cancer)
- biliary atresia and other pediatric liver diseases
- biliary trauma
- congenital anomalies of the biliary tract
- gallstones
- acute hepatitis
- cystic fibrosis
- intrahepatic cholestasis of pregnancy (obstetric cholestasis)
- primary biliary cirrhosis, an autoimmune disorder
- primary sclerosing cholangitis, associated with inflammatory bowel disease
- some drugs (e.g. flucloxacillin and erythromycin)
Drugs such as gold salts, nitrofurantoin, anabolic steroids, chlorpromazine, prochlorperazine, sulindac, cimetidine, erythromycin, estrogen, and statins can cause cholestasis and may result in damage to the liver.
Yellow discoloration of the skin, especially on the palms and the soles, but not of the sclera or inside the mouth is due to carotenemia—a harmless condition.