Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
In 2003, the incidence of Rh(D) sensitization in the United States was 6.8 per 1000 live births; 0.27% of women with an Rh incompatible fetus experience alloimmunization.
Complications of HDN could include kernicterus, hepatosplenomegaly, inspissated (thickened or dried) bile syndrome and/or greenish staining of the teeth, hemolytic anemia and damage to the liver due to excess bilirubin. Similar conditions include acquired hemolytic anemia, congenital toxoplasma and syphilis infection, congenital obstruction of the bile duct and cytomegalovirus infection.
- High at birth or rapidly rising bilirubin
- Prolonged hyperbilirubinemia
- Bilirubin Induced Neuorlogical Dysfunction
- Cerebral Palsy
- Kernicterus
- Neutropenia
- Thrombocytopenia
- Hemolytic Anemia - MUST NOT be treated with iron
- Late onset anemia - Must NOT be treated with iron. Can persist up to 12 weeks after birth.
PNH is rare, with an annual rate of 1-2 cases per million. The prognosis without disease-modifying treatment is 10–20 years. Many cases develop in people who have previously been diagnosed with aplastic anemia or myelodysplastic syndrome. The fact that PNH develops in MDS also explains why there appears to be a higher rate of leukemia in PNH, as MDS can sometimes transform into leukemia.
25% of female cases of PNH are discovered during pregnancy. This group has a high rate of thrombosis, and the risk of death of both mother and child are significantly increased (20% and 8% respectively).
Acquired hemolytic anemia can be divided into immune and non-immune mediated forms of hemolytic anemia.
Hereditary spherocytosis is the most common disorder of the red cell membrane and affects 1 in 2,000 people of Northern European ancestry. According to Harrison's Principles of Internal Medicine, the frequency is at least 1 in 5,000.
In general, AIHA in children has a good prognosis and is self-limiting. However, if it presents within the first two years of life or in the teenage years, the disease often follows a more chronic course, requiring long-term immunosuppression, with serious developmental consequences. The aim of therapy may sometimes be to lower the use of steroids in the control of the disease. In this case, splenectomy may be considered, as well as other immunosuppressive drugs. Infection is a serious concern in patients on long-term immunosuppressant therapy, especially in very young children (less than two years).
Drug induced hemolysis has large clinical relevance. It occurs when drugs actively provoke red blood cell destruction. It can be divided in the following manner:
- Drug-induced autoimmune hemolytic anemia
- Drug-induced nonautoimmune hemolytic anemia
A total of four mechanisms are usually described, but there is some evidence that these mechanisms may overlap.
Hemolytic anemia affects nonhuman species as well as humans. It has been found, in a number of animal species, to result from specific triggers.
Some notable cases include hemolytic anemia found in black rhinos kept in captivity, with the disease, in one instance, affecting 20% of captive rhinos at a specific facility. The disease is also found in wild rhinos.
Dogs and cats differ slightly from humans in some details of their RBC composition and have altered susceptibility to damage, notably, increased susceptibility to oxidative damage from consumption of onion. Garlic is less toxic to dogs than onion.
Cold agglutinins develop in more than 60% of patients with infectious mononucleosis, but hemolytic anemia is rare.
Classic chronic cold agglutinin disease is idiopathic, associated with symptoms and signs in relation to cold exposure.
Causes of the monoclonal secondary disease include the following:
- B-cell neoplasms - Waldenström macroglobulinemia, lymphoma, chronic lymphoid leukemia, myeloma
- Non hematologic neoplasms
Causes of polyclonal secondary cold agglutinin disease include the following:
- Mycoplasma infections.
- Viral infections: Infectious mononucleosis due to Epstein-Barr virus (EBV) or CMV, Mumps, varicella, rubella, adenovirus, HIV, influenza, hepatitis C.
- Bacterial infections: Legionnaire disease, syphilis, listeriosis and "Escherichia coli."
- Parasitic infections: Malaria and trypanosomiasis.
- Trisomy and translocation: Cytogenetic studies in patients with cold agglutinin disease have revealed the presence of trisomy 3 and trisomy 12. Translocation (8;22) has also been reported in association with cold agglutinin disease.
- Transplantation: Cold agglutinin–mediated hemolytic anemia has been described in patients after living-donor liver transplantation treated with tacrolimus and after bone marrow transplantation with cyclosporine treatments. It is postulated that such calcineurin inhibitors, which selectively affect T-cell function and spare B-lymphocytes, may interfere with the deletion of autoreactive T-cell clones, resulting in autoimmune disease.
- Systemic sclerosis: Cold agglutinin disease has been described in patients with sclerodermic features, with the degree of anemia being associated with increasing disease activity of the patient’s systemic sclerosis. This may suggest a close association between systemic rheumatic disease and autoimmune hematologic abnormalities.
- Hyperreactive malarial splenomegaly: Hyperreactive malarial splenomegaly (HMS) is an immunopathologic complication of recurrent malarial infection. Patients with HMS develop splenomegaly, acquired clinical immunity to malaria, high serum concentrations of anti-"Plasmodium" antibodies, and high titers of IgM, with a complement-fixing IgM that acts as a cold agglutinin.
- DPT vaccination: Diphtheria-pertussis-tetanus (DPT) vaccination has been implicated in the development of autoimmune hemolytic anemia caused by IgM autoantibody with a high thermal range. A total of 6 cases have been reported; 2 followed the initial vaccination and 4 followed the second or third vaccinations.
- Other: Equestrian perniosis is a rare cause of persistent elevated titers of cold agglutinins. Also rarely, the first manifestations of cold agglutinin disease can develop when a patient is subjected to hypothermia for cardiopulmonary bypass surgery.
Experimental gene therapy exists to treat hereditary spherocytosis in lab mice; however, this treatment has not yet been tried on humans due to all of the risks involved in human gene therapy.
Basically classified by causative mechanism, types of congenital hemolytic anemia include:
- Genetic conditions of RBC Membrane
- Hereditary spherocytosis
- Hereditary elliptocytosis
- Genetic conditions of RBC metabolism (enzyme defects). This group is sometimes called "congenital nonspherocytic (hemolytic) anemia", which is a term for a congenital hemolytic anemia without spherocytosis, and usually excluding hemoglobin abnormalities as well, but rather encompassing defects of glycolysis in the erythrocyte.
- Glucose-6-phosphate dehydrogenase deficiency (G6PD or favism)
- Pyruvate kinase deficiency
- Aldolase A deficiency
- Hemoglobinopathies/genetic conditions of hemoglobin
- Sickle cell anemia
- Congenital dyserythropoietic anemia
- Thalassemia
The thalassemia trait may confer a degree of protection against malaria, which is or was prevalent in the regions where the trait is common, thus conferring a selective survival advantage on carriers (known as heterozygous advantage), thus perpetuating the mutation. In that respect, the various thalassemias resemble another genetic disorder affecting hemoglobin, sickle-cell disease.
The disorder affects all genders but is more prevalent in certain ethnicities and age groups. 20 people die per year causing thalassemia to be listed as a “rare disease”. In the United States, thalassemia’s prevalence is approximately 1 in 272,000 or 1,000 people. There have been 4,000 hospitalized cases in England in 2002 and 9,233 consultant episodes for thalassemia. Men accounted for 53% of hospital consultant episodes and women accounted for 47%. The mean patient age is 23 with only 1% of consultants the patient is older than 75 and 69% were 15-59 year olds. The Children’s Hospital Oakland formed an international network to combat thalassemia. “It is the world’s most common genetic blood disorder and is rapidly increasing”. 7% of the world’s population are carriers and 400,000 babies are born with the trait annually. It is usually fatal in infancy if blood transfusion are not initiated immediately.
Cold agglutinins, or cold autoantibodies, occur naturally in nearly all individuals. These natural cold autoantibodies occur at low titers, less than 1:64 measured at 4 °C, and have no activity at higher temperatures. Pathologic cold agglutinins occur at titers over 1:1000 and react at 28-31 °C and sometimes at 37 °C.
Cold agglutinin disease usually results from the production of a specific IgM antibody directed against the I/i antigens (precursors of the ABH and Lewis blood group substances) on red blood cells (RBCs). Cold agglutinins commonly have variable heavy-chain regions encoded by VH, with a distinct idiotype identified by the 9G4 rat murine monoclonal antibody.
G6PD-deficient individuals do not appear to acquire any illnesses more frequently than other people, and may have less risk than other people for acquiring ischemic heart disease and cerebrovascular disease.
The issue is thought of as representing any of the following:
- a decreased production of normal-sized red blood cells (e.g., anemia of chronic disease, aplastic anemia);
- an increased production of HbS as seen in sickle cell disease (not sickle cell trait);
- an increased destruction or loss of red blood cells (e.g., hemolysis, posthemorrhagic anemia);
- an uncompensated increase in plasma volume (e.g., pregnancy, fluid overload);
- a B2 (riboflavin) deficiency
- a B6 (pyridoxine) deficiency
- or a mixture of conditions producing microcytic and macrocytic anemia.
Blood loss, suppressed production of RBCs or hemolysis represent most cases of normocytic anemia. In blood loss, morphologic findings are generally unremarkable except after 12 to 24 hrs where polychromasia appears. For reduced production of RBCs, like with low erythropoietin, the RBC morphology is unremarkable. Patients with disordered RBC production, e.g. myelodysplastic syndrome, may have a dual population of elliptocytes, teardrop cells, or other poikilocytes as well as a nucleated RBCs. Hemolysis will often demonstrate poikilocytes specific to a cause or mechanism. E.g. Bite cells and/or blistor cells for oxidative hemolysis, Acanthocytes for pyruvate kinase deficiency or McLeod phenotype, Sickle cells for sickle cell anemia, Spherocytes for immune-mediated hemolysis or hereditary spherocytosis, Elliptocytosis for iron deficiency or hereditary elliptocytosis and schistocytes for intravascular hemolysis. Many hemolytic anemias show multiple poikilocytes such as G6PD deficiency which may show blister and bites cells as well as shistocytes. Neonatal hemolysis may not follow the classic patterns as in adults
It has been suggested that women of child bearing age or young girls should not be given a transfusion with Rhc positive blood (or Kell positive blood for similar reasons). This would require a lot of extra work in blood transfusion departments and it is considered not economical to do the blood group screening at the present time.
It is theoretically likely that IgG anti-Rhc antibody injections would prevent sensitization to RBC surface Rhc antigens in a similar way that IgG anti-D antibodies (Rho(D) Immune Globulin) are used to prevent Rh disease, but the methods for IgG anti-Rhc antibodies have not been developed at the present time.
Drug-induced nonautoimmune hemolytic anemia is a form of hemolytic anemia.
Non-immune drug induced hemolysis can occur via oxidative mechanisms. This is particularly likely to occur when there is an enzyme deficiency in the antioxidant defense system of the red blood cells. An example is where antimalarial oxidant drugs like primaquine damage red blood cells in Glucose-6-phosphate dehydrogenase deficiency in which the red blood cells are more susceptible to oxidative stress due to reduced NADPH production consequent to the enzyme
deficiency.
Some drugs cause RBC (red blood cell) lysis even in normal individuals. These include dapsone and sulfasalazine.
Non-immune drug-induced hemolysis can also arise from drug-induced damage to cell volume control mechanisms; for example drugs can directly or indirectly impair regulatory volume decrease mechanisms, which become activated during hypotonic RBC swelling to return the cell to a normal volume. The consequence of the drugs actions are irreversible cell swelling and lysis (e.g. ouabain at very high doses).
Acquired hemolytic anemia may be caused by immune-mediated causes, drugs and other miscellaneous causes.
- Immune-mediated causes could include transient factors as in "Mycoplasma pneumoniae" infection (cold agglutinin disease) or permanent factors as in autoimmune diseases like autoimmune hemolytic anemia (itself more common in diseases such as systemic lupus erythematosus, rheumatoid arthritis, Hodgkin's lymphoma, and chronic lymphocytic leukemia).
- Spur cell hemolytic anemia
- Any of the causes of hypersplenism (increased activity of the spleen), such as portal hypertension.
- Acquired hemolytic anemia is also encountered in burns and as a result of certain infections (e.g. malaria).
- Lead poisoning resulting from the environment causes non-immune hemolytic anemia.
- Runners can suffer hemolytic anemia due to "footstrike hemolysis", owing to the destruction of red blood cells in feet at foot impact.
- Low-grade hemolytic anemia occurs in 70% of prosthetic heart valve recipients, and severe hemolytic anemia occurs in 3%.
In about a third of all ABO incompatible pregnancies maternal IgG anti-A or IgG anti-B antibodies pass through the placenta to the fetal circulation leading to a weakly positive direct Coombs test for the neonate's blood. However, ABO HDN is generally mild and short-lived and only occasionally severe because:
- IgG anti-A (or IgG anti-B) antibodies that enter the fetal circulation from the mother find A (or B) antigens on many different fetal cell types, leaving fewer antibodies available for binding onto fetal red blood cells.
- Fetal RBC surface A and B antigens are not fully developed during gestation and so there are a smaller number of antigenic sites on fetal RBCs.
Suggestions have been made that women of child bearing age or young girls should not be given a transfusion with Kell positive blood. Donated blood is not currently screened (in the U.S.A.) for the Kell blood group antigens as it is not considered cost effective at this time.
It has been hypothesized that IgG anti-Kell antibody injections would prevent sensitization to RBC surface Kell antigens in a similar way that IgG anti-D antibodies (Rho(D) Immune Globulin) are used to prevent Rh disease, but the methods for IgG anti-Kell antibodies have not been developed at the present time.
Certain gastrointestinal disorders can cause anemia. The mechanisms involved are multifactorial and not limited to malabsorption but mainly related to chronic intestinal inflammation, which causes dysregulation of hepcidin that leads to decreased access of iron to the circulation.
- "Helicobacter pylori" infection.
- Gluten-related disorders: untreated celiac disease and non-celiac gluten sensitivity. Anemia can be the only manifestation of celiac disease, in absence of gastrointestinal or any other symptoms.
- Inflammatory bowel disease.
Mothers who are negative for the Kell antigen develop antibodies after being exposed to red blood cells that are positive for Kell. Over half of the cases of hemolytic disease of the newborn owing the anti-Kell antibodies are caused by multiple blood transfusions, with the remainder due to a previous pregnancy with a Kell positive baby.
Anisocytosis is identified by RDW and is classified according to the size of RBC measured by MCV. According to this, it can be divided into
- Anisocytosis with microcytosis – Iron deficiency, sickle cell anemia
- Anisocytosis with macrocytosis – Folate or vitamin B deficiency, autoimmune hemolytic anemia, cytotoxic chemotherapy, chronic liver disease, myelodysplastic syndrome
Increased RDW is seen in iron deficiency anemia and decreased or normal in thalassemia major (Cooley's anemia), thalassemia intermedia
- Anisocytosis with normal RBC size – Early iron, vit B12 or folate deficiency, dimorphic anemia, Sickle cell disease, chronic liver disease, Myelodysplastic syndrome
Anti-A and anti-B antibodies are usually IgM and do not pass through the placenta, but some mothers "naturally" have IgG anti-A or IgG anti-B antibodies, which can pass through the placenta. Exposure to A-antigens and B-antigens, which are both widespread in nature, usually leads to the production of IgM anti-A and IgM anti-B antibodies but occasionally IgG antibodies are produced.
Some mothers may be sensitized by fetal-maternal transfusion of ABO incompatible red blood and produce immune IgG antibodies against the antigen they do not have and their baby does. For example, when a mother of genotype OO (blood group O) carries a fetus of genotype AO (blood group A) she may produce IgG anti-A antibodies. The father will either have blood group A, with genotype AA or AO, or more rarely, have blood group AB, with genotype AB.
It would be very rare for ABO sensitization to be caused by therapeutic blood transfusion as a great deal of effort and checking is done to ensure that blood is ABO compatible between the recipient and the donor.