Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Studies indicate that persons with symptomatic haemochromatosis have somewhat reduced life expectancy compared to the general population. This is mainly due to excess mortality from cirrhosis and liver cancer. Patients who were treated with phlebotomy lived longer than those who weren't. Patients without liver disease or diabetes had similar survival rate to the general population.
Affected individuals over age 40 or who have high serum ferritin levels are at risk for developing cirrhosis. Iron overload increases the risk of hepatocellular carcinoma. This risk is greater in those with cirrhosis but is still present in those without cirrhosis. Significant problems occur in around one in ten.
It is most common in certain European populations (such as the Irish and Norwegians) and occurs in 0.6% of the population. Men with the disease are 24 times more likely to experience symptoms than affected women.
Haemochromatosis is one of the most common heritable genetic conditions in people of northern European extraction with a prevalence of 1 in 200. The disease has a variable penetration and about 1 in 10 people of this demographic carry a mutation in one of the genes regulating iron metabolism, the most common allele being the C282Y allele in the "HFE" gene. The prevalence of mutations in iron metabolism genes varies in different populations. A study of 3,011 unrelated white Australians found that 14% were heterozygous carriers of an HFE mutation, 0.5% were homozygous for an "HFE" mutation, and only 0.25% of the study population had clinically relevant iron overload. Most patients who are homozygous for HFE mutations will not manifest clinically relevant haemochromatosis (see Genetics above). Other populations have a lower prevalence of both the genetic mutation and the clinical disease.
Genetic studies suggest the original haemochromatosis mutation arose in a single person, possibly of Celtic ethnicity, who lived 60–70 generations ago. At that time when dietary iron may have been scarcer than today, the presence of the mutant allele may have provided an evolutionary or natural selection reproductive advantage by maintaining higher iron levels in the blood.
The disease is typically progressive, leading to fulminant liver failure and death in childhood, in the absence of liver transplantation. Hepatocellular carcinoma may develop in PFIC-2 at a very early age; even toddlers have been affected.
Juvenile hemochromatosis (or hemochromatosis type 2) is, as its name indicates, a form of hemochromatosis which emerges during youth.
There are two forms:
- "HFE2A" is associated with hemojuvelin
- "HFE2B" is associated with hepcidin antimicrobial peptide
Some sources only specifically include hemojuvelin as a cause of juvenile hemochromatosis.
The causes of neonatal hemochromatosis are still unknown, but recent research has led to the hypothesis that it is an alloimmune disease. Evidence supporting this hypothesis includes the high rate among siblings (>80%). This evidence along with other research indicates that neonatal hemochromatosis could be classified as a congenital alloimmune hepatitis.
The condition is sometimes confused with juvenile hemochromatosis, which is a hereditary hemochromatosis caused by mutations of a gene called hemojuvelin. While the symptoms and outcomes for these two diseases are similar, the causes appear to be different.
Pyruvate kinase deficiency happens worldwide, however northern Europe, and Japan have many cases. The prevalence of pyruvate kinase deficiency is around 51 cases per million in the population (via gene frequency).
Type 1 tyrosinemia, also known as hepatorenal tyrosinemia or tyrosinosis, is the most severe form of tyrosinemia, a buildup of too much of the amino acid tyrosine in the blood and tissues due to an inability to metabolize it. It is caused by a deficiency of the enzyme fumarylacetoacetate hydrolase.
Progressive familial intrahepatic cholestasis (PFIC) is a group of familial cholestatic conditions caused by defects in biliary epithelial transporters. The clinical presentation usually occurs first in childhood with progressive cholestasis. This usually leads to failure to thrive, cirrhosis, and the need for liver transplantation.
Fucosidosis is an extremely rare disorder first described in 1962 in two Italian siblings who showed progressive intellectual disability and neurological deterioration. The disease itself is extremely rare (less than 100 documented cases) only affecting 1:2,000,000, with most cases being occurring in Italy, Cuba, and the southwest U.S. The disease has three different types. Type 1 and 2 are considered severe, and Type 3 being a mild disease. Symptoms are highly variable with mild cases being able to live to within the third or fourth decade. Type 1 and 2 are both linked with mental retardation. Severe cases can develop life-threatening complications early in childhood.
Because the major accumulating glycoconjugate in fucosidosis patients is the blood group H-antigen, it is intriguing to speculate, but the evidence is not clear at this time, that blood type may affect the course of the disease.
Overall, according to a study in British Columbia, approximately 2.3 children per 100,000 births (1 in 43,000) have some form of glycogen storage disease. In the United States, they are estimated to occur in 1 per 20,000–25,000 births. Dutch incidence rate is estimated to be 1 per 40,000 births.
Genes involved in iron metabolism disorders include HFE and TFR2.
Hepcidin is the master regulator of iron metabolism and, therefore, most genetic forms of iron overload can be thought of as relative hepcidin deficiency in one way or another. For instance, a severe form of iron overload, juvenile hemochromatosis, is a result of severe hepcidin deficiency. The majority of cases are caused by mutations in the hemojuvelin gene (HJV or RGMc/repulsive guidance molecule c). The exceptions, people who have mutations in the gene for ferroportin, prove the rule: these people have plenty of hepcidin, but their cells lack the proper response to it. So, in people with ferroportin proteins that transport iron out of cells without responding to hepcidin's signals to stop, they have a deficiency in the action of hepcidin, if not in hepcidin itself.
But the exact mechanisms of most of the various forms of adult hemochromatosis, which make up most of the genetic iron overload disorders, remain unsolved. So while researchers have been able to identify genetic mutations causing several adult variants of hemochromatosis, they now must turn their attention to the normal function of these mutated genes.
These genes represent multiple steps along the pathway of iron regulation, from the body's ability to sense iron, to the body's ability to regulate uptake and storage. Working out the functions of each gene in this pathway will be an important tool for finding new methods of treating genetic disorders, as well as for understanding the basic workings of the pathway.
So though many mysteries of iron metabolism remain, the discovery of hepcidin already allows a much better understanding of the nature of iron regulation, and makes researchers optimistic that many more breakthroughs in this field are soon to come.
While inherited deficiencies in uroporphyrinogen decarboxylase often lead to the development of PCT, there are a number of risk factors that can both cause and exacerbate the symptoms of this disease. One of the most common risk factors observed is infection with the Hepatitis C virus. One review of a collection of PCT studies noted Hepatitis C infection in 50% of documented cases of PCT. Additional risk factors include alcohol abuse, excess iron (from iron supplements as well as cooking on cast iron skillets), and exposure to chlorinated cyclic hydrocarbons and Agent Orange.
It can be a paraneoplastic phenomenon.
Porphyria cutanea tarda has a prevalence estimated at approximately 1 in 10,000. An estimated 80% of porphyria cutanea tarda cases are sporadic. The exact frequency is not clear because many people with the condition never experience symptoms and those that do are often misdiagnosed with anything ranging from idiopathic photodermatitis and seasonal allergies to hives.
Type 1 tyrosinemia is inherited in an autosomal recessive pattern. Worldwide, type I tyrosinemia affects about 1 person in 100,000. This type of tyrosinemia is much more common in Quebec, Canada. The overall incidence in Quebec is about 1 in 16,000 individuals. In the Saguenay-Lac-Saint-Jean region of Quebec, type 1 tyrosinemia affects 1 person in 1,846. The carrier rate has been estimated to be between 1 in 20 and 1 in 31.
Hemosiderosis (AmE) or haemosiderosis (BrE) is a form of iron overload disorder resulting in the accumulation of hemosiderin.
Types include:
- Transfusion hemosiderosis
- Idiopathic pulmonary hemosiderosis
- Transfusional diabetes
Hemosiderin deposition in the lungs is often seen after diffuse alveolar hemorrhage, which occurs in diseases such as Goodpasture's syndrome, granulomatosis with polyangiitis, and idiopathic pulmonary hemosiderosis. Mitral stenosis can also lead to pulmonary hemosiderosis. Hemosiderin collects throughout the body in hemochromatosis. Hemosiderin deposition in the liver is a common feature of hemochromatosis and is the cause of liver failure in the disease. Selective iron deposition in the beta cells of pancreatic islets leads to diabetes due to distribution of transferrin receptor on the beta cells of islets and in the skin leads to hyperpigmentation. Hemosiderin deposition in the brain is seen after bleeds from any source, including chronic subdural hemorrhage, cerebral arteriovenous malformations, cavernous hemangiomata. Hemosiderin collects in the skin and is slowly removed after bruising; hemosiderin may remain in some conditions such as stasis dermatitis. Hemosiderin in the kidneys has been associated with marked hemolysis and a rare blood disorder called paroxysmal nocturnal hemoglobinuria.
Hemosiderin may deposit in diseases associated with iron overload. These diseases are typically diseases in which chronic blood loss requires frequent blood transfusions, such as sickle cell anemia and thalassemia, though beta thalassemia minor has been associated with hemosiderin deposits in the liver in those with non-alcoholic fatty liver disease independent of any transfusions.
Treatment for hemosiderin focuses on limiting the effects of the underlying disease leading to continued deposition. In hemochromatosis, this entails frequent phlebotomy granulomatosis, immune suppression is required. Limiting blood transfusions and institution of iron chelation therapy when iron overload is detected are important when managing sickle-cell anemia and other chronic hemolytic anemias.
A Glycogen storage disease (GSD, also glycogenosis and dextrinosis) is a metabolic disorder caused by enzyme deficiencies affecting either glycogen synthesis, glycogen breakdown or glycolysis (glucose breakdown), typically within muscles and/or liver cells.
GSD has two classes of cause: genetic and acquired. Genetic GSD is caused by any inborn error of metabolism (genetically defective enzymes) involved in these processes. In livestock, acquired GSD is caused by intoxication with the alkaloid castanospermine.
Pyruvate kinase deficiency is an inherited metabolic disorder of the enzyme pyruvate kinase which affects the survival of red blood cells. Both autosomal dominant and recessive inheritance have been observed with the disorder; classically, and more commonly, the inheritance is autosomal recessive. Pyruvate kinase deficiency is the second most common cause of enzyme-deficient hemolytic anemia, following G6PD deficiency.
Canine fucosidosis is found in the English Springer Spaniel.
Typically affecting dogs between 18 months and four years, symptoms include:
- Loss of learned behavior
- Change in temperament
- Blindness
- Loss of balance
- Deafness
- Weight loss
- From the onset, disease progress is quick and fatal.
Just like the human version, canine fucosidosis is a recessive disorder and two copies of the gene must be present, one from each parent, in order to show symptoms of the disease.
Some liver diseases may cause porphyria even in the absence of genetic predisposition. These include hemochromatosis and hepatitis C. Treatment of iron overload may be required.
Patients with the acute porphyrias (AIP, HCP, VP) are at increased risk over their life for hepatocellular carcinoma (primary liver cancer) and may require monitoring. Other typical risk factors for liver cancer need not be present.
Hormonal fluctuations that contribute to cyclical attacks in women have been treated with oral contraceptives and luteinizing hormones to shut down menstrual cycles. However, oral contraceptives have also triggered photosensitivity and withdrawal of oral contraceptives has triggered attacks. Androgens and fertility hormones have also triggered attacks.
Hereditary spherocytosis is the most common disorder of the red cell membrane and affects 1 in 2,000 people of Northern European ancestry. According to Harrison's Principles of Internal Medicine, the frequency is at least 1 in 5,000.