Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Pulmonary venoocclusive disease is rare, difficult to diagnose, and probably frequently misdiagnosed as idiopathic pulmonary arterial hypertension. Prevalence in parts of Europe is estimated to be 0.1-0.2 cases per million.
PVOD appears to occur as frequently in men as in women, and age at diagnosis ranges from 7–74 years with a median of 39 years. PVOD may occur in patients with associated diseases such as HIV, bone marrow transplantation, and connective tissue diseases. PVOD has also been associated with several chemotherapy regimens such as bleomycin, BCNU, and mitomycin.
IPF has been recognized in several breeds of both dogs and cats, and has been best characterized in West Highland White Terriers. Veterinary patients with the condition share many of the same clinical signs as their human counterparts, including progressive exercise intolerance, increased respiratory rate, and eventual respiratory distress.
Prognosis is generally poor.
The clinical course of IPF can be unpredictable. IPF progression is associated with an estimated median survival time of 2 to 5 years following diagnosis.
The 5-year survival for IPF ranges between 20–40%, a mortality rate higher than that of a number of malignancies, including colon cancer, multiple myeloma and bladder cancer.
Recently a multidimensional index and staging system has been proposed to predict mortality in IPF. The name of the index is GAP and is based on gender [G], age [A], and two lung physiology variables [P] (FVC and DL that are commonly measured in clinical practice to predict mortality in IPF. The highest stage of GAP (stage III) has been found to be associated with a 39% risk of mortality at 1 year. This model has also been evaluated in IPF and other ILDs and shown good performance in predicting mortality in all main ILD subtypes. A modified ILD-GAP Index has been developed for application across ILD subtypes to provide disease-specific survival estimates. In IPF patients, the overall mortality at 5 years rate is high but the annual rate of all-cause mortality in patients with mild to moderate lung impairment is relatively low. This is the reason why change in lung function (FVC) is usually measured in 1-year clinical trials of IPF treatments rather than survival.
In addition to clinical and physiological parameters to predict how rapidly patients with IPF might progress, genetic and molecular features are also associated with IPF mortality. For example, it has been shown that IPF patients who have a specific genotype in the mucin MUC5B gene polymorphism (see above) experience slower decline in FVC and significantly improved survival. Even if such data are interesting from a scientific point of view, the application in the clinical routine of a prognostic model based on specific genotypes is still not possible.
The prognosis of pulmonary arterial hypertension (WHO Group I) has an "untreated" median survival of 2–3 years from time of diagnosis, with the cause of death usually being right ventricular failure (cor pulmonale). A recent outcome study of those patients who had started treatment with bosentan (Tracleer) showed that 89% patients were alive at 2 years. With new therapies, survival rates are increasing. For 2,635 patients enrolled in The Registry to Evaluate Early and Long-term Pulmonary Arterial Hypertension Disease Management (REVEAL Registry) from March 2006 to December 2009, 1-, 3-, 5-, and 7-year survival rates were 85%, 68%, 57%, and 49%, respectively. For patients with idiopathic/familial PAH, survival rates were 91%, 74%, 65%, and 59%. Levels of mortality are very high in pregnant women with severe pulmonary arterial hypertension (WHO Group I). Pregnancy is sometimes described as contraindicated in these women.
Death may occur rapidly with acute, massive pulmonary bleeding or over longer periods as the result of continued pulmonary failure and right heart failure. Historically, patients had an average survival of 2.5 years after diagnosis, but today 86% may survive beyond five years.
Pulmonary capillary hemangiomatosis (PCH) is a disease affecting the blood vessels of the lungs, where abnormal capillary proliferation and venous fibrous intimal thickening result in progressive increase in vascular resistance. It is a rare cause of pulmonary hypertension, and occurs predominantly in young adults. Together with pulmonary veno-occlusive disease, PCH comprises WHO Group I' causes for pulmonary hypertension. Indeed, there is some evidence to suggest that PCH and pulmonary veno-occlusive disease are different forms of a similar disease process.
Pulmonary capillary hemangiomatosis patients, families, and caregivers are encouraged to join the Registry NIH Rare Lung Diseases Consortium Contact Registry
The genetic cause of pulmonary veno-occlusive disease is mutations in EIF2AK4 gene. Though this does not mean other possible causes do not exist, such as viral infection and risk of toxic chemicals (chemotherapy drugs).
The epidemiology of IPAH is about 125–150 deaths per year in the U.S., and worldwide the incidence is similar to the U.S. at 4 cases per million. However, in parts of Europe (France) indications are 6 cases per million of IPAH. Females have a higher incidence rate than males (2–9:1).
Other forms of PH are far more common. In systemic scleroderma, the incidence has been estimated to be 8 to 12% of all patients; in rheumatoid arthritis it is rare. However, in systemic lupus erythematosus it is 4 to 14%, and in sickle cell disease, it ranges from 20 to 40%. Up to 4% of people who suffer a pulmonary embolism go on to develop chronic thromboembolic disease including pulmonary hypertension. A small percentage of patients with COPD develop pulmonary hypertension with no other disease to explain the high pressure. On the other hand, obesity-hypoventilation syndrome is very commonly associated with right heart failure due to pulmonary hypertension.
The incidence of clinical HAPE in unacclimatized travelers exposed to high altitude (~) appears to be less than 1%. The U.S. Army Pike's Peak Research Laboratory has exposed sea-level-resident volunteers rapidly and directly to high altitude; during 30 years of research involving about 300 volunteers (and over 100 staff members), only three have been evacuated with suspected HAPE.
Following diagnosis, mean survival of patients with PPH is 15 months. The survival of those with cirrhosis is sharply curtailed by PPH but can be significantly extended by both medical therapy and liver transplantation, provided the patient remains eligible.
Eligibility for transplantation is generally related to mean pulmonary artery pressure (PAP). Given the fear that those PPH patients with high PAP will suffer right heart failure following the stress of post-transplant reperfusion or in the immediate perioperative period, patients are typically risk-stratified based on mean PAP. Indeed, the operation-related mortality rate is greater than 50% when pre-operative mean PAP values lie between 35 and 50 mm Hg; if mean PAP exceeds 40-45, transplantation is associated with a perioperative mortality of 70-80% (in those cases without preoperative medical therapy). Patients, then, are considered to have a high risk of perioperative death once their mean PAP exceeds 35 mm_Hg.
Survival is best inferred from published institutional experiences. At one institution, without treatment, 1-year survival was 46% and 5-year survival was 14%. With medical therapy, 1-year survival was 88% and 5-year survival was 55%. Survival at 5 years with medical therapy followed by liver transplantation was 67%. At another institution, of the 67 patients with PPH from 1652 total cirrhotics evaluated for transplant, half (34) were placed on the waiting list. Of these, 16 (48%) were transplanted at a time when 25% of all patients who underwent full evaluation received new livers, meaning the diagnosis of PPH made a patient twice as likely to be transplanted, once on the waiting list. Of those listed for transplant with PPH, 11 (33%) were eventually removed because of PPH, and 5 (15%) died on the waitlist. Of the 16 transplanted patients with PPH, 11 (69%) survived for more than a year after transplant, at a time when overall one-year survival in that center was 86.4%. The three year post-transplant survival for patients with PPH was 62.5% when it was 81.02% overall at this institution.
Individual susceptibility to HAPE is difficult to predict. The most reliable risk factor is previous susceptibility to HAPE, and there is likely to be a genetic basis to this condition, perhaps involving the gene for angiotensin converting enzyme (ACE). Recently, scientists have found the similarities between low amounts of 2,3-BPG (also known as 2,3-DPG) with the occurrence of HAPE at high altitudes. Persons with sleep apnea are susceptible due to irregular breathing patterns while sleeping at high altitudes.
SIPE is estimated to occur in 1-2% of competitive open-water swimmers, with 1.4% of triathletes, 1.8% of combat swimmers and 1.1% of divers and swimmers reported in the literature.
ILD may be classified according to the cause. One method of classification is as follows:
1. Inhaled substances
- Inorganic
- Silicosis
- Asbestosis
- Berylliosis
- printing workers (eg. carbon bblack, ink mist)
- Organic
- Hypersensitivity pneumonitis
2. Drug-induced
- Antibiotics
- Chemotherapeutic drugs
- Antiarrhythmic agents
3. Connective tissue and Autoimmune diseases
- Rheumatoid arthritis
- Systemic lupus erythematosus
- Systemic sclerosis
- Polymyositis
- Dermatomyositis
4. Infection
- Atypical pneumonia
- Pneumocystis pneumonia (PCP)
- Tuberculosis
- "Chlamydia" trachomatis
- Respiratory Syncytial Virus
5. Idiopathic
- Sarcoidosis
- Idiopathic pulmonary fibrosis
- Hamman-Rich syndrome
- Antisynthetase syndrome
6. Malignancy
- Lymphangitic carcinomatosis
7. Predominantly in children
- Diffuse developmental disorders
- Growth abnormalities deficient alveolarisation
- Infant conditions of undefined cause
- ILD related to alveolar surfactant region
The disease is more common in males and in tobacco smokers.
In a recent epidemiologic study from Japan, Autoimmune PAP has an incidence and prevalence higher than previously reported and is not strongly linked to smoking, occupational exposure, or other illnesses.
Endogenous lipoid pneumonia and non-specific interstitial pneumonitis has been seen prior to the development of PAP in a child.
Idiopathic pulmonary haemosiderosis (or idiopathic pulmonary hemosiderosis; IPH) is a lung disease of unknown cause that is characterized by alveolar capillary bleeding and accumulation of haemosiderin in the lungs. It is rare, with an incidence between 0.24 and 1.23 cases per million people.
PAP patients, families, and caregivers are encouraged to join the NIH Rare Lung Diseases Consortium Contact Registry. This is a privacy protected site that provides up-to-date information for individuals interested in the latest scientific news, trials, and treatments related to rare lung diseases.
Management has generally been reported to be conservative, though deaths have been reported.
- Removal from water
- Observation
- Diuretics and / or Oxygen when necessary
- Episodes are generally self-limiting in the absence of other medical problems
Portopulmonary hypertension (PPH) is defined by the coexistence of portal and pulmonary hypertension. PPH is a serious complication of liver disease, present in 0.25 to 4% of all patients suffering from cirrhosis. Once an absolute contraindication to liver transplantation, it is no longer, thanks to rapid advances in the treatment of this condition. Today, PPH is comorbid in 4-6% of those referred for a liver transplant.
Interstitial lung disease (ILD), or diffuse parenchymal lung disease (DPLD), is a group of lung diseases affecting the interstitium (the tissue and space around the air sacs of the lungs). It concerns alveolar epithelium, pulmonary capillary endothelium, basement membrane, perivascular and perilymphatic tissues. It may occur when an injury to the lungs triggers an abnormal healing response. Ordinarily, the body generates just the right amount of tissue to repair damage. But in interstitial lung disease, the repair process goes awry and the tissue around the air sacs (alveoli) becomes scarred and thickened. This makes it more difficult for oxygen to pass into the bloodstream. The term ILD is used to distinguish these diseases from obstructive airways diseases.
In children, several unique forms of ILD exist which are specific for the young age groups. The acronym chILD is used for this group of diseases and is derived from the English name, Children’s Interstitial Lung Diseases – chILD.
Prolonged ILD may result in pulmonary fibrosis, but this is not always the case. Idiopathic pulmonary fibrosis is interstitial lung disease for which no obvious cause can be identified (idiopathic), and is associated with typical findings both radiographic (basal and pleural based fibrosis with honeycombing) and pathologic (temporally and spatially heterogeneous fibrosis, histopathologic honeycombing and fibroblastic foci).
In 2013 interstitial lung disease affected 595,000 people globally. This resulted in 471,000 deaths.
The most common cause is post-surgical atelectasis, characterized by splinting, i.e. restricted breathing after abdominal surgery.
Another common cause is pulmonary tuberculosis. Smokers and the elderly are also at an increased risk. Outside of this context, atelectasis implies some blockage of a bronchiole or bronchus, which can be within the airway (foreign body, mucus plug), from the wall (tumor, usually squamous cell carcinoma) or compressing from the outside (tumor, lymph node, tubercle). Another cause is poor surfactant spreading during inspiration, causing the surface tension to be at its highest which tends to collapse smaller alveoli. Atelectasis may also occur during suction, as along with sputum, air is withdrawn from the lungs. There are several types of atelectasis according to their underlying mechanisms or the distribution of alveolar collapse; resorption, compression, microatelectasis and contraction atelectasis.
Baylor College of Medicine in Houston, Texas has conducted ACD research since 2001.
The true incidence of TRALI is unknown because of the difficulty in making the diagnosis and because of underreporting. It is estimated to occur in 1:1300 to 1:5000 transfusions of plasma-containing products. TRALI is the leading reported cause of death related to transfusion in the United States; more than 20 cases were reported per year from 2003 to 2005. The immune mediated form of TRALI occurs approximately once every 5000 transfusions and has a mortality of 6–9%.
The atmosphere is composed of 78% nitrogen and 21% oxygen. Since oxygen is exchanged at the alveoli-capillary membrane, nitrogen is a major component for the alveoli's state of inflation. If a large volume of nitrogen in the lungs is replaced with oxygen, the oxygen may subsequently be absorbed into the blood, reducing the volume of the alveoli, resulting in a form of alveolar collapse known as absorption atelectasis.
Clinically, the most serious and immediate complication is acute respiratory distress syndrome (ARDS), which usually occurs within 24 h. Those with significant lower airway involvement may develop bacterial infection. Importantly, victims suffering body surface burn and smoke inhalation are the most susceptible. Thermal injury combined with inhalation injury compromises pulmonary function, producing microvascular hyperpermeability that leads to a significant increase in lung lymph flow and pulmonary edema. The terrorist attack on the World Trade Center on September 11, 2001 left many people with impaired lung function. A study of firefighters and EMS workers enrolled in the FDNY WTC Medical Monitoring and Treatment Program, whose lung function was tested prior to 9/11, documented a steep decline in lung function in the first year after 9/11. A new study that includes a thousand additional workers shows that the declines have persisted over time. Prior to 9/11, 3% of firefighters had below-normal lung function, one year after 9/11 nearly 19% did, and six years later it stabilized at 13%. Ten to 14 days after acute exposure to some agents (e.g. ammonia, nitrogen oxides, sulfur dioxide, mercury), some patients develop bronchiolitis obliterans progressing to ARDS. Bronchiolitis obliterans with organized pneumonia can ensue when granulation tissue accumulates in the terminal airways and alveolar ducts during the body's reparative process. A minority of these patients develop late pulmonary fibrosis. Also at enhanced risk are persons with co-morbidities. Several studies report that both aged persons and smokers are especially vulnerable to the adverse effects of inhalation injury.
Two broad types of genetic abnormality have been found to cause ACDMPV: (1) a mutation of the FOXF1 gene on chromosome 16, or (2) other genetic abnormalities such as deletions in areas of chromosome 16 that regulate the expression of the "FOXF1" gene. New genetic abnormalities are being found regularly, but at present around 80-90% of infants with confirmed ACDMPV can be found to have one of these abnormalities. The genetic abnormalities responsible for ACDMPV in the remaining 10-20% of cases are currently being investigated including testing for deletions farther away from the FOXF1 gene on chromosome 16 and whole exome testing.