Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
About 1 in 1,000 children in the United States is born with profound deafness. By age 9, about 3 in 1,000 children have hearing loss that affects the activities of daily living. More than half of these cases are caused by genetic factors. Most cases of genetic deafness (70% to 80%) are nonsyndromic; the remaining cases are caused by specific genetic syndromes. In adults, the chance of developing hearing loss increases with age; hearing loss affects half of all people older than 80 years.
Individuals with Nager syndrome typically have the malformations of the auricle, external auditory canal, and middle ear, including the ossicles. These malformations were found in 80% of individuals with Nager syndrome. Inner ear malformations, however, are not typically seen in this population. Middle ear disease is common among individuals with Nager syndrome. Chronic otitis media and Eustachian tube deformity can result in conductive hearing loss. For this reason, early detection and treatment for middle ear disease is crucial in this population. Sensorineural hearing loss is not a typical characteristic of Nager syndrome; however, a subset of individuals present with a mixed hearing loss, due to a progressive sensorineural component combined with the typical conductive hearing loss (Herrman "et al.", 2005).
Some over-the-counter as well as prescription drugs and certain industrial chemicals are ototoxic. Exposure to
these can result in temporary or permanent hearing loss.
Some medications cause irreversible damage to the ear, and are limited in their use for this reason. The most important group is the aminoglycosides (main member gentamicin). A rare mitochondrial mutation, m.1555A>G, can increase an individual's susceptibility to the ototoxic effect of aminoglycosides. Long term hydrocodone (Vicodin) abuse is known to cause rapidly progressing sensorineural hearing loss, usually without vestibular symptoms. Methotrexate, a chemotherapy agent, is also known to cause hearing loss. In most cases hearing loss does not recover when the drug is stopped. Paradoxically, methotrexate is also used in the treatment of autoimmune-induced inflammatory hearing loss.
Various other medications may reversibly degrade hearing. This includes loop diuretics, sildenafil (Viagra), high or sustained dosing of NSAIDs (aspirin, ibuprofen, naproxen, and various prescription drugs: celecoxib, etc.), quinine, and macrolide antibiotics (erythromycin, etc.).
Prolonged or repeated environmental or work-related exposure to ototoxic chemicals can also result in sensorineural hearing loss. Some of these chemicals are:
- butyl nitrite - chemical used recreationally known as 'poppers'
- carbon disulfide - a solvent used as a building block in many organic reactions
- styrene, an industrial chemical precursor of polystyrene, a plastic
- carbon monoxide, a poisonous gas resulting from incomplete combustion
- heavy metals: tin, lead, manganese, mercury
- hexane, an industrial solvent and one of the significant constituents of gasoline
- ethylbenzene, an industrial solvent used in the production of styrene
- toluene and xylene, highly poisonous petrochemical solvents. Toluene is a component of high-octane gasolne; xylene is used in the production of polyester fibers and resins.
- trichloroethylene, an industrial degreasing solvent
- Organophosphate pesticides
These are much more common in premature babies, particularly those under 1500 g at birth. Premature birth can be associated with problems that result in sensorineural hearing loss such as anoxia or hypoxia(poor oxygen levels), jaundice, intracranial haemorrhages, meningitis. Fetal alcohol syndrome is reported to cause hearing loss in up to 64% of infants born to alcoholic mothers, from the ototoxic effect on the developing fetus, plus malnutrition during pregnancy from the excess alcohol intake.
Genetic factors are thought to cause more than 50% of all incidents of congenital hearing loss. Genetic hearing loss may be autosomal dominant, autosomal recessive, or X-linked (related to the sex chromosome).
Other causes of congenital hearing loss that are not hereditary in nature include prenatal infections, illnesses, toxins consumed by the mother during pregnancy or other conditions occurring at the time of birth or shortly thereafter. These conditions typically cause sensorineural hearing loss ranging from mild to profound in degree.
Hearing loss with craniofacial syndromes is a common occurrence. Many of these multianomaly disorders involve structural malformations of the outer or middle ear, making a significant hearing loss highly likely.
About 22 million workers are exposed to hazardous noise, with additional millions exposed to solvents and metals that could put them at increased risk for hearing loss. Occupational hearing loss is one of the most common occupational diseases. 49% of male miners have hearing loss by the age of 50. By the age of 60, this number goes up to 70%. Construction workers also suffer an elevated risk. A screening program focused on construction workers employed at US Department of Energy facilities found 58% with significant abnormal hearing loss due to noise exposures at work. Occupational hearing loss is present in up to 33% of workers overall. Occupational exposure to noise causes 16% of adult disabling hearing loss worldwide.
The following is a list of occupations that are most susceptible to hearing loss:
- Agriculture
- Mining
- Construction
- Manufacturing
- Utilities
- Transportation
- Military
- Musicians
- Orchestra conductors
Aural atresia is the underdevelopment of the middle ear and canal and usually occurs in conjunction with microtia. Atresia occurs because patients with microtia may not have an external opening to the ear canal, though. However, the cochlea and other inner ear structures are usually present. The grade of microtia usually correlates to the degree of development of the middle ear.
Microtia is usually isolated, but may occur in conjunction with hemifacial microsomia, Goldenhar Syndrome or Treacher-Collins Syndrome. It is also occasionally associated with kidney abnormalities (rarely life-threatening), and jaw problems, and more rarely, heart defects and vertebral deformities.
The aging process has three distinct components: physiologic degeneration, extrinsic damage (nosocusis), and intrinsic damage (sociocusis). These factors are superimposed on a genetic substrate, and may be overshadowed by general age-related susceptibility to diseases and disorders.
Hearing loss is only weakly correlated with age. In preindustrial and non-industrial societies, persons retain their hearing into old age. In the Framingham cohort study, only 10% of the variability of hearing with age could be explained by age-related physiologic deterioration. Within family groups, heredity factors were dominant; across family groups, other, presumably sociocusis and nosocusis factors were dominant.
- Heredity: factors like early aging of the cochlea and susceptibility of the cochlea for drug insults are genetically determined.
- Oxidative stress
- General inflammatory conditions
In addition to medications, hearing loss can also result from specific chemicals: metals, such as lead; solvents, such as toluene (found in crude oil, gasoline and automobile exhaust, for example); and asphyxiants. Combined with noise, these ototoxic chemicals have an additive effect on a person’s hearing loss.
Hearing loss due to chemicals starts in the high frequency range and is irreversible. It damages the cochlea with lesions and degrades central portions of the auditory system. For some ototoxic chemical exposures, particularly styrene, the risk of hearing loss can be higher than being exposed to noise alone.
- Solvents
- toluene, styrene, xylene, "n"-hexane, ethyl benzene, white spirits/Stoddard, carbon disulfide, jet fuel, perchloroethylene, trichloroethylene, "p"-xylene
- Asphyxiants
- carbon monoxide, hydrogen cyanide
- Heavy metals
- lead, mercury, cadmium, arsenic, tin-hydrocarbon compounds (trimethyltin)
- Pesticides and herbicides - The evidence is weak regarding association between herbicides and hearing loss; hearing loss in such circumstances may be due to concommitant exposure to insecticides.
- paraquat, organophosphates
Nosocusis factors are those that can cause hearing loss, which are not noise-based and separate from pure presbycusis. They may include:
- Ototoxic drugs: Ingestion of ototoxic drugs like aspirin may hasten the process of presbycusis.
- vascular degeneration
- Atherosclerosis: May diminish vascularity of the cochlea, thereby reducing its oxygen supply.
- Dietary habits: Increased intake of saturated fat may accelerate atherosclerotic changes in old age.
- Smoking: Is postulated to accentuate atherosclerotic changes in blood vessels aggravating presbycusis.
- Diabetes: May cause vasculitis and endothelial proliferation in the blood vessels of the cochlea, thereby reducing its blood supply.
- Hypertension: causes potent vascular changes, like reduction in blood supply to the cochlea, thereby aggravating presbycusis.
However, a recent study found that diabetes, atherosclerosis and hypertension had no correlation to presbycusis, suggesting that these are nosocusis (acquired hearing loss) factors, not intrinsic factors.
Some medications may reversibly affect hearing. These medications are considered ototoxic. This includes loop diuretics such as furosemide and bumetanide, non-steroidal anti-inflammatory drugs (NSAIDs) both over-the-counter (aspirin, ibuprofen, naproxen) as well as prescription (celecoxib, diclofenac, etc.), paracetamol, quinine, and macrolide antibiotics. The link between NSAIDs and hearing loss tends to be greater in women, especially those who take ibuprofen six or more times a week. Others may cause permanent hearing loss. The most important group is the aminoglycosides (main member gentamicin) and platinum based chemotherapeutics such as cisplatin and carboplatin.
On October 18, 2007, the U.S. Food and Drug Administration (FDA) announced that a warning about possible sudden hearing loss would be added to drug labels of PDE5 inhibitors, which are used for erectile dysfunction.
The World Health Organization estimates that nearly 360 million people have moderate to profound hearing loss from all causes. Rates of hearing loss has traditionally been attributed to occupational or firearm-related exposure, as well as recreational exposure. The World Health Organization estimated in 2015 that 1.1 billion young people are at risk for hearing loss caused by unsafe listening practices. The over-exposure to excessive loud noise is partially attributed to recreational exposure, such as the use of personal audio devices with music at high volumes for long durations, or social settings such as bars, entertainment and sporting events.
Approximately 24% adults age 20-69 in the United States has an audiometric notch, suggesting high levels of noise exposure as of 2011. This data identified differences in NIHL based on age, gender, race/ethnicity, and whether or not a person is exposed to noise at work. Among people aged 20–29, 19.2% had an audiometric notch, compared to 27.3% of people aged 50–59. Males in general had a notch more often than females, regardless of occupational noise exposure, for both unilateral and bilateral audiometric notches.
Occupational noise exposure is a risk factor for noise induced hearing loss. One study examined hearing test results obtained between 2000-2008 for workers ages 18–65 who had a higher occupational noise exposure than the average worker. Of the sample taken, 18% of the workers had hearing loss. Of the occupations considered, the Mining industry had the highest prevalence and risk of hearing loss, at approximately 27%. Other industries with a higher prevalence and risk included Construction (23.48%) and Manufacturing, especially Wood Product and Non-metallic Mineral Product (19.89%), Apparel (20.18%), and Machinery (21.51%).
Treatment is supportive and consists of management of manifestations. User of hearing aids and/or cochlear implant, suitable educational programs can be offered. Periodic surveillance is also important.
"20% to 40% of children with microtia/anotia will have additional defects that could suggest a syndrome."
Treacher-Collins Syndrome: (TCS) A congenital disorder caused by a defective protein known as treacle, and is characterized by craniofacial deformities; malformed or absent ears are also seen in this syndrome. The effects may be mild, undiagnosed to severe, leading to death. Because the ear defects are much different in this disorder and not only affect the outer ear, but the middle ear as well, reconstructive surgery may not help with the child's hearing and in this case a Bone Anchored Hearing Aid would be best. BAHA will only work, however if the inner ear and nerve are intact.
Goldenhar Syndrome: A rare congenital birth defect that causes abnormalities of facial development. also known as Oculoauricular Dysplasia. The facial anomalies include underdeveloped, asymmetric half of the face. The defect is capable of affecting tissue, muscle, and the underlying bone structure of the side of the face with the abnormality.
Ablepharon-macrostomia Syndrome: (AMS) A rare genetic disorder characterized by various physical anomalies which affect the craniofacial area, the skin, the fingers, and the genitals.
There is no treatment to correct an enlarged vestibular aqueduct. Any hearing loss will need management with amplification and support in education and at work. If the hearing loss becomes severe to profound cochlear implants can be of significant value. Vestibular disturbance is usually short-lived and associated with head trauma but significant vestibular hypofunction may require rehabilitation.
People with enlarged vestibular aqueducts are advised to avoid head trauma where possible. This usually means avoiding contact sports such as boxing and rugby, but also horse riding, trampolining and other sports where head injury may occur. Some have symptoms when flying and should limit these activities if affected.
Mondini dysplasia, also known as Mondini malformation and Mondini defect, is an abnormality of the inner ear that is associated with sensorineural hearing loss.
This deformity was first described in 1791 by Mondini after examining the inner ear of a deaf boy. The Mondini dysplasia describes a cochlea with incomplete partitioning and a reduced number of turns, an enlarged vestibular aqueduct and a dilated vestibule. A normal cochlea has two and a half turns, a cochlea with Mondini dysplasia has one and a half turns; the basal turns being normally formed with a dilated or cystic apical turn to the cochlear. The hearing loss can deteriorate over time either gradually or in a step-wise fashion, or may be profound from birth.
Hearing loss associated with Mondini dysplasia may first become manifest in childhood or early adult life. Some children may pass newborn hearing screen to lose hearing in infancy but others present with a hearing loss at birth. Hearing loss is often progressive and because of the associated widened vestibular aqueduct may progress in a step-wise fashion associated with minor head trauma. Vestibular function is also often affected. While the hearing loss is sensorineural a conductive element may exist probably because of the third window effect of the widened vestibular aqueduct. The Mondini dysplasia can occur in cases of Pendred Syndrome and Branchio-oto-renal syndrome and in other syndromes, but can occur in non-syndromic deafness.
Anotia ("no ear") describes a rare congenital deformity that involves the complete absence of the pinna, the outer projected portion of the ear, and narrowing or absence of the ear canal. This contrasts with microtia, in which a small part of the pinna is present. Anotia and microtia may occur unilaterally (only one ear affected) or bilaterally (both ears affected). This deformity results in conductive hearing loss, deafness.
Microtia is a congenital deformity where the pinna (external ear) is underdeveloped. A completely undeveloped pinna is referred to as anotia. Because microtia and anotia have the same origin, it can be referred to as microtia-anotia. Microtia can be unilateral (one side only) or bilateral (affecting both sides). Microtia occurs in 1 out of about 8,000–10,000 births. In unilateral microtia, the right ear is most commonly affected. It may occur as a complication of taking Accutane (isotretinoin) during pregnancy.
Although large vestibular aqueducts are a congenital condition, hearing loss may not be present from birth. Age of diagnosis ranges from infancy to adulthood, and symptoms include fluctuating and sometimes progressive sensorineural hearing loss and disequilibrium.
Earlier workers suggested the use of calcium fluoride; now sodium fluoride is the preferred compound. Fluoride ions inhibit the rapid progression of disease. In the otosclerotic ear, there occurs formation of hydroxylapatite crystals which lead to stapes (or other) fixation. The administration of fluoride replaces the hydroxyl radical with fluoride leading to the formation of fluorapatite crystals. Hence, the progression of disease is considerably slowed down and active disease process is arrested.
This treatment cannot reverse conductive hearing loss, but may slow the progression of both the conductive and sensorineural components of the disease process. Otofluor, containing sodium fluoride, is one treatment. Recently, some success has been claimed with a second such treatment, bisphosphonate medications that inhibit bone destruction. However, these early reports are based on non-randomized case studies that do not meet standards of clinical trials. There are numerous side-effects to both pharmaceutical treatments, including occasional stomach upset, allergic itching, and increased joint pains which can lead to arthritis. In the worst case, bisphosphonates may lead to osteonecrosis of the auditory canal itself. Finally, neither approach has been proven to be beneficial after the commonly preferred method of surgery has been undertaken.
Third window effect caused by:
- Superior canal dehiscence – which may require surgical correction.
- Widened vestibular aqueducts
It may be that a genetic tendency to develop otosclerosis is inherited by some people. Then a trigger, such as a viral infection (like measles), actually causes the condition to develop.
Fluid accumulation is the most common cause of conductive hearing loss in the middle ear, especially in children. Major causes are ear infections or conditions that block the eustachian tube, such as allergies or tumors. Blocking of the eustachian tube leads to decreased pressure in the middle ear relative to the external ear, and this causes decreased motion of both the ossicles and the tympanic membrane.
- acute or serous otitis media
- otitis media with effusion or 'glue ear'
- Perforated eardrum
- Chronic suppurative otitis media (CSOM)
- Cholesteatoma
- Otosclerosis, abnormal growth of bone in or near the middle ear
- middle ear tumour
- ossicular discontinuity as a consequence of infection or temporal bone trauma
- Congenital malformation of the ossicles. This can be an isolated phenomenon or can occur as part of a syndrome where development of the 1st and 2nd branchial arches is seen such as in Goldenhar syndrome, Treacher Collins syndrome, branchio-oto-renal syndrome etc.
- Barotrauma unequal air pressures in the external and middle ear. This can temporarily occur, for example, by the environmental pressure changes as when shifting altitude, or inside a train going into a tunnel. It is managed by any of various methods of ear clearing manoeuvres to equalize the pressures, like swallowing, yawning, or the Valsalva manoeuvre. More severe barotrauma can lead to middle ear fluid or even permanent sensorineural hearing loss.