Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
Surgery may be difficult due to the location of these tumors. Surgery alone often leads to recurrence. Chemotherapy is very effective for TVTs. The prognosis for complete remission with chemotherapy is excellent. The most common chemotherapy agents used are vincristine, vinblastine, and doxorubicin. Radiotherapy may be required if chemotherapy does not work.
In male dogs, the tumor affects the penis and foreskin. In female dogs, it affects the vulva. Rarely, the mouth or nose are affected. The tumor often has a cauliflower-like appearance. Signs of genital TVT include a discharge from the prepuce and in some cases urinary retention, from blockage of the urethra. Signs of a nasal TVT include nasal fistulae, nosebleeds and other nasal discharge, facial swelling, and enlargement of the submandibular lymph nodes.
A transmissible cancer is a cancer cell or cluster of cancer cells that can be transferred between individuals without the involvement of an infectious agent, such as an oncovirus. Transmission of cancer between humans is rare.
Contagious cancers occur in dogs, Tasmanian devils, Syrian hamsters, and some marine bivalves including soft-shell clams. These cancers have a relatively stable genome as they are transmitted.
In humans, a significant fraction of Kaposi's sarcoma occurring after transplantation may be due to tumorous outgrowth of donor cells. Although Kaposi's sarcoma is caused by a virus (Kaposi's sarcoma-associated herpesvirus), in these cases, it appears likely that transmission of virus-infected tumor cells—rather than the free virus—caused tumors in the transplant recipients.
Animals that have undergone population bottlenecks may be at greater risks of contracting transmissible cancers. Because of their transmission, it was initially thought that these diseases were caused by the transfer of oncoviruses, in the manner of cervical cancer caused by HPV.
- Canine transmissible venereal tumor (CTVT) is sexually transmitted cancer in dogs. It was experimentally transplanted between dogs in 1876 by M. A. Novinsky (1841–1914). A single malignant clone of CTVT cells has colonized dogs worldwide, representing the oldest known malignant cell line in continuous propagation.
- Contagious reticulum cell sarcoma of the Syrian hamster can be transmitted from one Syrian hamster to another by means of the bite of the mosquito "Aedes aegypti".
- Devil facial tumour disease (DFTD) is a transmissible parasitic cancer in the Tasmanian devil.
- Soft-shell clams, "Mya arenaria", have been found to be vulnerable to a transmissible neoplasm of the hemolymphatic system — effectively, leukemia.
- Horizontally transmitted cancers have also been discovered in three other species of marine bivalves: bay mussels ("Mytilus trossulus"), common cockles ("Cerastoderma edule") and golden carpet shell clams ("Polititapes aureus"). The golden carpet shell clam cancer was found to have been transmitted from another species, the pullet carpet shell ("Venerupis corrugata").
Transmissible cancer, caused by a clone of malignant cells rather than a virus, is an extremely rare disease modality, with few transmissible cancers being known—canine transmissible venereal tumour (CTVT), which is sexually transmitted among dogs, or contagious reticulum cell sarcoma of the Syrian hamster, which can be transmitted via mosquito bites of "Aedes aegypti". Those two species, coupled with the two types of transmissible cancer present in Tasmanian devils, are the only mammals that currently have been identified. CTVT mutes the expression of the immune response, whereas the Syrian hamster disease spreads due to lack of genetic diversity. However, there are some non-mammalian species that seem likely to also have some sort of transmissible cancer. The soft shell clam ("Mya arenaria") is theorized to be the fourth species afflicted by transmissible cancer.
A virus was initially thought to be the cause of DFTD, but no evidence of such a virus could be detected in the cancer cells. Calicivirus, 1080 poison, agricultural chemicals, and habitat fragmentation combined with a retrovirus were other proposed causes. Environmental toxins had also been suspected. In March 2006 a devil escaped from a park into an area infected with DFTD. She was recaptured with bite marks on her face, and returned to live with the other devils in the park. She wounded a male and by October both devils had DFTD, which was subsequently spread to two others (an incident that in retrospect would be understood in the context of the allograft theory of transmission, see following).
To understand the cause that was eventually found, it is important to understand that Tasmanian devil cells have 14 chromosomes; the oldest-known strain of the tumour cells, when these were studied, were shown to contain thirteen chromosomes, nine of which are recognizable and four of which are mutated “marker” chromosomes. More recently evolved strains have an additional mutant marker chromosome, for a total of fourteen chromosomes. Researchers identified the cancer as a neuroendocrine tumour, and found identical chromosomal rearrangements in all the cancer cells. The karyotype anomalies of DFTD cells are similar to those of cancer cells from canine transmissible venereal tumour (CTVT), a cancer of dogs that is transmitted by physical contact. Among the mutations present in the tumour genome is trisomy in chromosome 5p, as well as several single base mutations, and short insertions and deletions, e.g., deletions in the chromosomes 1, 2 and 3. Some of the mutated or deleted genes in DFTD are RET, FANCD2, MAST3 and BTNL9-like gene.
The theory that cancer cells themselves could be an infective agent (the Allograft Theory) was first offered in 2006 by Pearse, Swift, and colleagues, who analyzed DFTD cells from devils in several locations, determining that all DFTD cells sampled were genetically identical to each other, and genetically distinct from their hosts and from all other individual Tasmanian devils whose genetics had been studied; this allowed them to conclude that the cancer originated from a single individual and spread from it, rather than arising repeatedly, and independently. Twenty one different subtypes have been identified by analyzing the mitochondrial and nuclear genomes of 104 tumours from different Tasmanian devils. Researchers have also witnessed a previously-uninfected devil develop tumours from lesions caused by an infected devil’s bites, supporting the contention that the disease is spread by allograft, with transmission via biting, scratching, and aggressive sexual activity between individuals. News reports have reported speculation that the disease is spread by devils biting each other during the mating season. DFTD is rare in juveniles.
Since June 2005, three females have been found that are partially resistant to DFTD. Further research has shown that the infectious facial cancer may be able to spread because of low diversity in devil immune genes (MHC class I and II). The same genes are also found in the tumours, so the devil's immune system does not recognize the tumour cells as foreign.
As of this date, there are at least four strains of the cancer, which, with its monoclonal origin, supports the conclusion that it is evolving. Increased levels of tetraploidy have been shown to exist in the oldest strain of DFTD as of 2014, which correlates with the point at which devils became involved in a DFTD removal programme. Because ploidy slows the tumour growth rate, the DFTD removal programme has been suggested as a selective pressure favouring slower-growing tumours, and more generally that disease eradication programmes aimed at DFTD may encourage the evolution of DFTD. The existence of multiple strains may complicate attempts to develop a vaccine, and there are reports of concerns that the evolution of the cancer may allow it to spread to related species such as the quoll.
An international team of researchers reported in "Science" in January 2010 that DFTD likely originated in the Schwann cells of a single devil. Schwann cells are found in the peripheral nervous system, and produce myelin and other proteins essential for the functions of nerve cells in the peripheral nervous system. BBC reported that the researchers sampled 25 tumours and found that the tumours were genetically identical. Using deep sequencing technology, the study authors then profiled the tumours' transcriptome, the set of genes that are active in tumours; Time magazine reported that the transcriptomes closely matched those of Schwann cells, revealing high activity in many of the genes coding for myelin basic protein production. Several specific markers were identified by the team, including the MBP and PRX genes, which may enable veterinarians to more easily distinguish DFTD from other types of cancer, and may eventually help identify a genetic pathway that can be targeted to treat it.
Due to the decreased life expectancy of the devils with DFTD, affected individuals have begun breeding at younger ages in the wild, with reports that many only live to participate in one breeding cycle. Hence, Tasmanian devils appear to have changed breeding habits in response to the disease; females had previously begun to breed annually at age two, for about three more years, dying thereafter of a variety of causes. Populations are now characterised by onset of breeding at age one, dying of DFTD, on average, shortly thereafter. Social interactions have been seen to contribute to spread of DFTD in a local area.
In 2015, a variant form of the cancer was described which was tetraploid, not diploid like the main form of the cancer. The tetraploid form has been linked to lower mortality rates. The cell type origin of this strain of DFTD is unknown.
Antineoplastic resistance, synonymous with chemotherapy resistance, is the ability of cancer cells to survive and grow despite different anti-cancer therapies, i.e. their multiple drug resistance. There are two general causes of antineoplastic therapy failure:
Inherent resistance, such as genetic characteristics, giving cancer cells their resistance from the beginning, which is rooted in the concept of cancer cell heterogeneity and acquired resistance after drug exposure.
Antineoplastic resistance, often used interchangeably with chemotherapy resistance, is the multiple drug resistance of neoplastic (cancerous) cells, or the ability of cancer cells to survive and grow despite anti-cancer therapies.
There are two general causes of antineoplastic therapy failure: Inherent genetic characteristics, giving cancer cells their resistance, which is rooted in the concept of cancer cell heterogeneity and acquired resistance after drug exposure. Altered membrane transport, enhanced DNA repair, apoptotic pathway defects, alteration of target molecules, protein and pathway mechanisms, such as enzymatic deactivation.
Since cancer is a genetic disease, two genomic events underlie acquired drug resistance: Genome alterations (e.g. gene amplification and deletion) and epigenetic modifications.
Cancer cells are constantly using a variety of tools, involving genes, proteins and altered pathways, to ensure their survival against antineoplastic drugs.
Follicular thyroid cancer or follicular thyroid carcinoma accounts for 15% of thyroid cancer and occurs more commonly in women over 50 years of age. Thyroglobulin (Tg) can be used as a tumor marker for well-differentiated follicular thyroid cancer. Follicular cells are the thyroid cells responsible for the production and secretion of thyroid hormones.
Hurthle cell thyroid cancer is often considered a variant of follicular cell carcinoma. Hurthle cell forms are more likely than follicular carcinomas to be bilateral and multifocal and to metastasize to lymph nodes. Like follicular carcinoma, unilateral hemithyroidectomy is performed for non-invasive disease, and total thyroidectomy for invasive disease.
The coronavirus which causes ECE has a counterpart strain that has more systemic effects with a higher mortality rate. This systemic syndrome has been compared to Feline infectious peritonitis in cats.
Epizootic catarrhal enteritis (ECE) is a viral disease that first appeared in the northeastern US in 1994, is an inflammation of the mucous membranes in the intestine. The condition manifests itself as severe diarrhea (often of a bright green color), loss of appetite, and severe weight loss. The virus can be passed via fluids and indirectly between humans. Although it was often fatal when first discovered, ECE is less of a threat today.
Wet-tail is a disease in the animal's intestines caused by the bacteria, "Lawsonia intracellularis". Wet-tail is a stress related illness—such stress can be caused by a variety of factors, including:
- Too much handling
- Change in environment
- Change in diet
- Extremely unclean caging
- Being away from mother and/or siblings
- Illness or death of a pair-bond or mate
Wet-tail or proliferative ileitis, is a disease of hamsters. It is precipitated by stress. Even with treatment, the animal can die within 48–72 hours. Baby hamsters are much more likely to get the disease than older hamsters. It commonly is found when the hamster is being weaned at about four weeks of age.
Females possess two X-chromosomes, males have one X and one Y-chromosome. Since the mutations causing the disease are X-linked recessive, a female carrying the defect on one of her X-chromosomes may not be affected by it, as the equivalent allele on her other chromosome should express itself to produce the necessary clotting factors, due to X inactivation. However, the Y-chromosome in the male has no gene for factors VIII or IX. If the genes responsible for production of factor VIII or factor IX present on a male's X-chromosome are deficient there is no equivalent on the Y-chromosome to cancel it out, so the deficient gene is not masked and the disorder will develop.
Since a male receives his single X-chromosome from his mother, the son of a healthy female silently carrying the deficient gene will have a 50% chance of inheriting that gene from her and with it the disease; and if his mother is affected with haemophilia, he will have a 100% chance of being a haemophiliac. In contrast, for a female to inherit the disease, she must receive two deficient X-chromosomes, one from her mother and the other from her father (who must therefore be a haemophiliac himself). Hence haemophilia is far more common among males than females. However, it is possible for female carriers to become mild haemophiliacs due to lyonisation (inactivation) of the X-chromosomes. Haemophiliac daughters are more common than they once were, as improved treatments for the disease have allowed more haemophiliac males to survive to adulthood and become parents. Adult females may experience menorrhagia (heavy periods) due to the bleeding tendency. The pattern of inheritance is criss-cross type. This type of pattern is also seen in colour blindness.
A mother who is a carrier has a 50% chance of passing the faulty X-chromosome to her daughter, while an affected father will always pass on the affected gene to his daughters. A son cannot inherit the defective gene from his father. This is a recessive trait and can be passed on if cases are more severe with carrier. Genetic testing and genetic counselling is recommended for families with haemophilia. Prenatal testing, such as amniocentesis, is available to pregnant women who may be carriers of the condition.
As with all genetic disorders, it is of course also possible for a human to acquire it spontaneously through mutation, rather than inheriting it, because of a new mutation in one of their parents' gametes. Spontaneous mutations account for about 33% of all cases of haemophilia A. About 30% of cases of haemophilia B are the result of a spontaneous gene mutation.
If a female gives birth to a haemophiliac son, either the female is a carrier for the blood disorder or the haemophilia was the result of a spontaneous mutation. Until modern direct DNA testing, however, it was impossible to determine if a female with only healthy children was a carrier or not. Generally, the more healthy sons she bore, the higher the probability that she was not a carrier.
If a male is afflicted with the disease and has children with a female who is not even a carrier, his daughters will be carriers of haemophilia. His sons, however, will not be affected with the disease. The disease is X-linked and the father cannot pass haemophilia through the Y-chromosome. Males with the disorder are then no more likely to pass on the gene to their children than carrier females, though all daughters they sire will be carriers and all sons they father will not have haemophilia (unless the mother is a carrier).
Patients infected in solid organ transplants have developed a severe fatal illness, starting within weeks of the transplant. In all reported cases, the initial symptoms included fever, lethargy, anorexia and leukopenia, and quickly progressed to multisystem organ failure, hepatic insufficiency or severe hepatitis, dysfunction of the transplanted organ, coagulopathy, hypoxia, multiple bacteremias and shock. Localized rash and diarrhea were also seen in some patients. Nearly all cases have been fatal.
In May 2005, four solid-organ transplant recipients contracted an illness that was later diagnosed as lymphocytic choriomeningitis. All received organs from a common donor, and within a month of transplantation, three of the four recipients had died as a result of the viral infection. Epidemiologic investigation traced the source to a pet hamster that the organ donor had recently purchased from a Rhode Island pet store. Similar cases occurred in Massachusetts in 2008, and Australia in 2013. Currently, there is not a LCMV infection test that is approved by the Food and Drug Administration for organ donor screening. The "Morbidity and Mortality Weekly Report" advises health-care providers to "consider LCMV infection in patients with aseptic meningitis and encephalitis and in organ transplant recipients with unexplained fever, hepatitis, or multisystem organ failure."
There are numerous different mutations which cause each type of haemophilia. Due to differences in changes to the genes involved, people with haemophilia often have some level of active clotting factor. Individuals with less than 1% active factor are classified as having severe haemophilia, those with 1-5% active factor have moderate haemophilia, and those with mild haemophilia have between 5-40% of normal levels of active clotting factor.
Lymphocytic choriomeningitis is not a commonly reported infection in humans, though most infections are mild and are often never diagnosed. Serological surveys suggest that approximately 1–5% of the population in the U.S. and Europe has antibodies to LCMV. The prevalence varies with the living conditions and exposure to mice, and it has been higher in the past due to lower standards of living. The island of Vir in Croatia is one of the biggest described endemic places of origin of LCMV in the world, with IFA testing having found LCMV antibodies in 36% of the population. Individuals with the highest risk of infection are laboratory personnel who handle rodents or infected cells. Temperature and time of year is also a critical factor that contributes to the number of LCMV infections, particularly during fall and winter when mice tend to move indoors. Approximately 10–20% of the cases in immunocompetent individuals are thought to progress to neurological disease, mainly as aseptic meningitis. The overall case fatality rate is less than 1% and people with complications, including meningitis, almost always recover completely. Rare cases of meningoencephalitis have also been reported. More severe disease is likely to occur in people who are immunosuppressed.
More than 50 infants with congenital LCMV infection have been reported worldwide. The probability that a woman will become infected after being exposed to rodents, the frequency with which LCMV crosses the placenta, and the likelihood of clinical signs among these infants are still poorly understood. In one study, antibodies to LCMV were detected in 0.8% of normal infants, 2.7% of infants with neurological signs and 30% of infants with hydrocephalus. In Argentina, no congenital LCMV infections were reported among 288 healthy mothers and their infants. However, one study found that two of 95 children in a home for people with severe mental disabilities had been infected with this virus. The prognosis for severely affected infants appears to be poor. In one series, 35% of infants diagnosed with congenital infections had died by the age of 21 months.
Transplant-acquired lymphocytic choriomeningitis proves to have a very high morbidity and mortality rate. In the three clusters reported in the U.S. from 2005 to 2010, nine of the ten infected recipients died. One donor had been infected from a recently acquired pet hamster while the sources of the virus in the other cases were unknown.
Hypoadrenocorticism is typically a disease of young to middle-aged female dogs, although Standard Poodles and Bearded Collies of both sexes are prone to the condition.
Hypoadrenocorticism is an inherited disease in the following breeds (and therefore a higher proportion of dogs within these breeds are affected, compared to other breeds):
- Bearded Collie
- Nova Scotia Duck Tolling Retriever
- Portuguese Water Dog
- Standard Poodle
Some breeds are at increased risk of hypoadrenocorticism:
- Airedale Terrier
- Basset Hound
- Bearded Collie
- Great Dane
- Rottweiler
- Springer Spaniels: English Springer Spaniel and Welsh Springer Spaniel
- Saint Bernard
- Soft-Coated Wheaten Terrier
- West Highland white terrier
Some breeds have a reduced risk of hypoadrenocorticism:
- Boxer
- Cocker Spaniel
- Golden Retriever
- Pit Bull Terrier
- Lhasa Apso
- Yorkshire Terrier
The testicle or testis is the male reproductive gland in all animals, including humans. It is homologous to the female ovary. The functions of the testes are to produce both sperm and androgens, primarily testosterone. Testosterone release is controlled by the anterior pituitary luteinizing hormone; whereas sperm production is controlled both by the anterior pituitary follicle-stimulating hormone and gonadal testosterone.
Although the disease is more common in African-Americans than in Caucasians, it may occur in any patient population.
Reduced salivary flow rate is associated with increased caries since the buffering capability of saliva is not present to counterbalance the acidic environment created by certain foods. As a result, medical conditions that reduce the amount of saliva produced by salivary glands, in particular the submandibular gland and parotid gland, are likely to lead to dry mouth and thus to widespread tooth decay. Examples include Sjögren's syndrome, diabetes mellitus, diabetes insipidus, and sarcoidosis. Medications, such as antihistamines and antidepressants, can also impair salivary flow. Stimulants, most notoriously methylamphetamine, also occlude the flow of saliva to an extreme degree. This is known as meth mouth. Tetrahydrocannabinol (THC), the active chemical substance in cannabis, also causes a nearly complete occlusion of salivation, known in colloquial terms as "cotton mouth". Moreover, 63% of the most commonly prescribed medications in the United States list dry mouth as a known side-effect. Radiation therapy of the head and neck may also damage the cells in salivary glands, somewhat increasing the likelihood of caries formation.
Susceptibility to caries can be related to altered metabolism in the tooth, in particular to fluid flow in the dentin. Experiments on rats have shown that a high-sucrose, cariogenic diet "significantly suppresses the rate of fluid motion" in dentin.
The use of tobacco may also increase the risk for caries formation. Some brands of smokeless tobacco contain high sugar content, increasing susceptibility to caries. Tobacco use is a significant risk factor for periodontal disease, which can cause the gingiva to recede. As the gingiva loses attachment to the teeth due to gingival recession, the root surface becomes more visible in the mouth. If this occurs, root caries is a concern since the cementum covering the roots of teeth is more easily demineralized by acids than enamel. Currently, there is not enough evidence to support a causal relationship between smoking and coronal caries, but evidence does suggest a relationship between smoking and root-surface caries.
Exposure of children to secondhand tobacco smoke is associated with tooth decay.
Intrauterine and neonatal lead exposure promote tooth decay. Besides lead, all atoms with electrical charge and ionic radius similar to bivalent calcium,
such as cadmium, mimic the calcium ion and therefore exposure to them may promote tooth decay.
Poverty is also a significant social determinant for oral health. Dental caries have been linked with lower socio-economic status and can be considered a disease of poverty.
Forms are available for risk assessment for caries when treating dental cases; this system using the evidence-based Caries Management by Risk Assessment (CAMBRA). It is still unknown if the identification of high-risk individuals can lead to more effective long-term patient management that prevents caries initiation and arrests or reverses the progression of lesions.
Saliva also contains iodine and EGF. EGF results effective in cellular proliferation, differentiation and survival. Salivary EGF, which seems also regulated by dietary inorganic iodine, plays an important physiological role in the maintenance of oral (and gastro-oesophageal) tissue integrity, and, on the other hand, iodine is effective in prevention of dental caries and oral health.
Although in many cases no cause is apparent, dilated cardiomyopathy is probably the result of damage to the myocardium produced by a variety of toxic, metabolic, or infectious agents. It may be due to fibrous change of the myocardium from a previous myocardial infarction. Or, it may be the late sequelae of acute viral myocarditis, such as with Coxsackie B virus and other enteroviruses possibly mediated through an immunologic mechanism.
Other causes include:
- Chagas disease, due to "Trypanosoma cruzi". This is the most common infectious cause of dilated cardiomyopathy in Latin America
- Pregnancy. Dilated cardiomyopathy occurs late in gestation or several weeks to months postpartum as a peripartum cardiomyopathy. It is reversible in half of cases.
- Alcohol abuse (alcoholic cardiomyopathy)
- Nonalcoholic toxic insults include administration of certain chemotherapeutic agents, in particular doxorubicin (Adriamycin), and cobalt.
- Thyroid disease
- Inflammatory diseases such as sarcoidosis and connective tissue diseases
- Tachycardia-induced cardiomyopathy
- Muscular dystrophy
- Tuberculosis - 1 to 2% of TB cases.
- Autoimmune mechanisms
Recent studies have shown that those subjects with an extremely high occurrence (several thousands a day) of premature ventricular contractions (extrasystole) can develop dilated cardiomyopathy. In these cases, if the extrasystole are reduced or removed (for example, via ablation therapy) the cardiomyopathy usually regresses.
Drug induced (iatrogenic) hypoadrenocorticism is caused during abrupt cessation of a steroid medication. During steroid treatment, the adrenal glands do not function fully. The body senses the levels of the exogenous steroids in the system and therefore does not signal for additional production. The usual protocol for stopping steroid medications is not to eliminate them suddenly, but to withdraw from them gradually in a "tapering off" process, which allows the production to adjust to normal. If steroids are abruptly withdrawn, the dormant adrenal glands may not able to reactivate, and the body will need to have its adrenal glucocorticoid hormones replaced by medication.
All fish carry pathogens and parasites. Usually this is at some cost to the fish. If the cost is sufficiently high, then the impacts can be characterised as a disease. However disease in fish is not understood well. What is known about fish disease often relates to aquaria fish, and more recently, to farmed fish.
Disease is a prime agent affecting fish mortality, especially when fish are young. Fish can limit the impacts of pathogens and parasites with behavioural or biochemical means, and such fish have reproductive advantages. Interacting factors result in low grade infection becoming fatal diseases. In particular, things that causes stress, such as natural droughts or pollution or predators, can precipitate outbreak of disease.
Disease can also be particularly problematic when pathogens and parasites carried by introduced species affect native species. An introduced species may find invading easier if potential predators and competitors have been decimated by disease.
Pathogens which can cause fish diseases comprise:
- viral infections, such as esocid lymphosarcoma found in "Esox" species.
- bacterial infections, such as "Pseudomonas fluorescens" leading to fin rot and fish dropsy
- fungal infections
- water mould infections, such as "Saprolegnia" sp.
- metazoan parasites, such as copepods
- unicellular parasites, such as "Ichthyophthirius multifiliis" leading to ich
- Certain parasites like Helminths for example "Eustrongylides"