Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Survivors of "Haemophilus" meningitis may experience permanent damage caused by inflammation around the brain, mostly involving neurological disorders. Long-term complications include brain damage, hearing loss, and mental retardation. Other possible long-term effects are reduced IQ, cerebral palsy, and the development of seizures. Children that survive the disease are more often held back in school, and are more likely to require special education services. Negative long-term effects are more likely in subjects whose treatments were delayed, as well as in subjects who were given antibiotics to which the bacteria was resistant. Ten percent of survivors develop epilepsy, while close to twenty percent of survivors develop hearing loss ranging from mild loss to deafness. About 45% of survivors experience no negative long-term effects.
While the "Haemophilus influenzae" bacteria is unable to survive in any environment outside of the human body, humans can carry the bacteria within their bodies without developing any symptoms of the disease. It spreads through the air when an individual carrying the bacteria coughs or sneezes. The risk of developing "Haemophilus" meningitis is most directly related to an individual's vaccination history, as well as the vaccination history of the general public. Herd immunity, or the protection that unvaccinated individuals experience when the majority of others in their proximity are vaccinated, does help in the reduction of meningitis cases, but it does not guarantee protection from the disease. Contact with other individuals with the disease also vastly increases the risk of infection. A child in the presence of family members sick with "Haemophilus" meningitis or carrying the bacteria is 585 times more likely to catch "Haemophilus" meningitis. Additionally, siblings of individuals with the Haemophilus influenzae meningitis receive reduced benefits from certain types of immunization. Similarly, children under two years of age have a greater risk of contracting the disease when attending day care, especially in their first month of attendance, due to the maintained contact with other children who might be asymptomatic carriers of the Hib bacteria.
Persons with component deficiencies in the final common complement pathway (C3,C5-C9) are more susceptible to "N. meningitidis" infection than complement-satisfactory persons, and it was estimated that the risk of infection is 7000 times higher in such individuals. In addition, complement component-deficient populations frequently experience frequent meningococcal disease since their immune response to natural infection may be less complete than that of complement non-deficient persons.
Inherited properdin deficiency also is related, with an increased risk of contracting meningococcal disease. Persons with functional or anatomic asplenia may not efficiently clear encapsulated "Neisseria meningitidis" from the bloodstream Persons with other conditions associated with immunosuppression also may be at increased risk of developing meningococcal disease.
Untreated, bacterial meningitis is almost always fatal. Viral meningitis, in contrast, tends to resolve spontaneously and is rarely fatal. With treatment, mortality (risk of death) from bacterial meningitis depends on the age of the person and the underlying cause. Of newborns, 20–30% may die from an episode of bacterial meningitis. This risk is much lower in older children, whose mortality is about 2%, but rises again to about 19–37% in adults. Risk of death is predicted by various factors apart from age, such as the pathogen and the time it takes for the pathogen to be cleared from the cerebrospinal fluid, the severity of the generalized illness, a decreased level of consciousness or an abnormally low count of white blood cells in the CSF. Meningitis caused by "H. influenzae" and meningococci has a better prognosis than cases caused by group B streptococci, coliforms and "S. pneumonia". In adults, too, meningococcal meningitis has a lower mortality (3–7%) than pneumococcal disease.
In children there are several potential disabilities which may result from damage to the nervous system, including sensorineural hearing loss, epilepsy, learning and behavioral difficulties, as well as decreased intelligence. These occur in about 15% of survivors. Some of the hearing loss may be reversible. In adults, 66% of all cases emerge without disability. The main problems are deafness (in 14%) and cognitive impairment (in 10%).
Tuberculous meningitis in children continues to be associated with a significant risk of death even with treatment (19%), and a significant proportion of the surviving children have ongoing neurological problems. Just over a third of all cases survives with no problems.
Bacterial and viral meningitis are contagious, but neither is as contagious as the common cold or flu. Both can be transmitted through droplets of respiratory secretions during close contact such as kissing, sneezing or coughing on someone, but cannot be spread by only breathing the air where a person with meningitis has been. Viral meningitis is typically caused by enteroviruses, and is most commonly spread through fecal contamination. The risk of infection can be decreased by changing the behavior that led to transmission.
Late-onset meningitis is most likely infection from the community. Late onset meningitis may be caused by other Gram-negative bacteria and "staphylococcal" species. In developing countries "Streptococcus pneumoniae" accounts for most cases of late onset.
HIV-infected individuals are likely to be at increased risk for meningococcal disease; HIV-infected individuals who wish to reduce their risk of meningococcal disease may receive primary immunization against meningococcal disease. Although efficacy of meningitis A,C,Y and W-135 vaccines have not been evaluated in HIV-infected individuals to date, HIV-infected individuals 11–55 years of age may receive primary immunization with the conjugated vaccine. Vaccination against meningitis does not decrease CD4+ T-cell counts or increase viral load in HIV-infected individuals, and there has been no evidence that the vaccines adversely affect survival.
Prevention of neonatal meningitis is primarily intrapartum (during labor) antibiotic prophylaxis (prevention) of pregnant mothers to decrease chance of early-onset meningitis by GBS. For late-onset meningitis, prevention is passed onto the caretakers to stop the spread of infectious microorganisms. Proper hygiene habits are first and foremost, while stopping improper antibiotic use; such as over-prescriptions, use of broad spectrum antibiotics, and extended dosing times will aid prevention of late-onset neonatal meningitis. A possible prevention may be vaccination of mothers against GBS and "E. coli", however, this is still under development.
Most strains of "H. influenzae" are opportunistic pathogens; that is, they usually live in their host without causing disease, but cause problems only when other factors (such as a viral infection, reduced immune function or chronically inflamed tissues, e.g. from allergies) create an opportunity. They infect the host by sticking to the host cell using trimeric autotransporter adhesins.
Naturally acquired disease caused by "H. influenzae" seems to occur in humans only. In infants and young children, "H. influenzae" type b (Hib) causes bacteremia, pneumonia, epiglottitis and acute bacterial meningitis. On occasion, it causes cellulitis, osteomyelitis, and infectious arthritis. It is one cause of neonatal infection.
Due to routine use of the Hib conjugate vaccine in the U.S. since 1990, the incidence of invasive Hib disease has decreased to 1.3/100,000 in children. However, Hib remains a major cause of lower respiratory tract infections in infants and children in developing countries where the vaccine is not widely used. Unencapsulated "H. influenzae" strains are unaffected by the Hib vaccine and cause ear infections (otitis media), eye infections (conjunctivitis), and sinusitis in children, and are associated with pneumonia.
Due to the importance of disease caused by "S. pneumoniae" several vaccines have been developed to protect against invasive infection. The World Health Organization recommend routine childhood pneumococcal vaccination; it is incorporated into the childhood immunization schedule in a number of countries including the United Kingdom, United States, and South Africa.
The risk factors associated with BPF are not well known. However, it has been suggested that children under 5 years of age are more susceptible to BPF since they lack serum bactericidal activity against the infection. Older children and adults have much higher titers of bactericidal antibodies, which serve as a protective measure. Also children residing in warmer geographic areas have been associated with a higher risk of BPF infection.
"S. pneumoniae" is normally found in the nose and throat of 5–10% of healthy adults and 20–40% of healthy children. It can be found in higher amounts in certain environments, especially those where people are spending a great deal of time in close proximity to each other (day-care centers, military barracks). It attaches to nasopharyngeal cells through interaction of bacterial surface adhesins. This normal colonization can become infectious if the organisms are carried into areas such as the Eustachian tube or nasal sinuses where it can cause otitis media and sinusitis, respectively. Pneumonia occurs if the organisms are inhaled into the lungs and not cleared (again, viral infection, or smoking-induced ciliary paralysis might be contributing factors). The organism's polysaccharide capsule makes it resistant to phagocytosis and if there is no pre-existing anticapsular antibody alveolar macrophages cannot adequately kill the pneumococci. The organism spreads to the blood stream (where it can cause bacteremia) and is carried to the meninges, joint spaces, bones, and peritoneal cavity, and may result in meningitis, brain abscess, septic arthritis, or osteomyelitis.
"S. pneumoniae" has several virulence factors, including the polysaccharide capsule mentioned earlier, that help it evade a host's immune system. It has pneumococcal surface proteins that inhibit complement-mediated opsonization, and it secretes IgA1 protease that will destroy secretory IgA produced by the body and mediates its attachment to respiratory mucosa.
The risk of pneumococcal infection is much increased in persons with impaired IgG synthesis, impaired phagocytosis, or defective clearance of pneumococci. In particular, the absence of a functional spleen, through congenital asplenia, surgical removal of the spleen, or sickle-cell disease predisposes one to a more severe course of infection (overwhelming post-splenectomy infection) and prevention measures are indicated (see asplenia).
People with a compromised immune system, such as those living with HIV, are also at higher risk of pneumococcal disease. In HIV patients with access to treatment, the risk of invasive pneumoccal disease is 0.2–1% per year and has a fatality rate of 8%.
There is an association between pneumococcal pneumonia and influenza. Damage to the lining of the airways (respiratory epithelium) and upper respiratory system caused by influenza may facilitate pneumococcal entry and infection.
Other risk factors include smoking, injection drug use, Hepatitis C, and COPD.
The serious complications of HiB are brain damage, hearing loss, and even death.
Individuals with a weak immune system are most at risk. This includes individuals taking immunosuppressive medication, cancer patients, HIV patients, premature babies with very low birth weight, the elderly, etc.
People who are at an increased risk of acquiring particular fungal infections in general may also be at an increased risk of developing fungal meningitis, as the infection may in some cases spread to the CNS. People residing in the Midwestern United States, and Southwestern United States and Mexico are at an increased risk of infection with "Histoplasma" and "Coccidioides", respectively.
The most common causes of viral meningitis in the United States are non-polio enteroviruses. The viruses that cause meningitis are typically acquired from sick contacts. However, in most cases, people infected with viruses that may cause meningitis do not actually develop meningitis.
Viruses that can cause meningitis include:
From 1988–1999, about 36,000 cases occurred each year. While the disease can occur in both children and adults, it is more common in children. During an outbreak in Romania and in Spain viral meningitis was more common among adults. While, people aged younger than 15 made up 33.8% of cases. In contrast in Finland in 1966 and in Cyprus in 1996, Gaza 1997, China 1998 and Taiwan 1998, the incidences of viral meningitis were more common among children.
The treatment of TB meningitis is isoniazid, rifampicin, pyrazinamide and ethambutol for two months, followed by isoniazid and rifampicin alone for a further ten months. Steroids help reduce the risk of death in those without HIV. Steroids can be used in the first six weeks of treatment, A few people may require immunomodulatory agents such as thalidomide. Hydrocephalus occurs as a complication in about a third of people with TB meningitis. The addition of aspirin may reduce or delay mortality, possibly by reducing complications such as infarcts.
The disease is associated with high rates of mortality and severe morbidity.
Ameobic pathogens exist as free-living protozoans. Nevertheless, these pathogens cause rare and uncommon CNS infections. N. fowleri produces primary amebic meningoencephalitis (PAM). The symptoms of PAM are indistinguishable from acute bacterial meningitis. Other amebae cause granulomatous amebic encephalitis (GAE), which is a more subacute and can even a non-symptomatic chronic infection. Ameobic meningoencephalitis can mimic a brain abscess, aseptic or chronic meningitis, or CNS malignancy.
Patients infected in solid organ transplants have developed a severe fatal illness, starting within weeks of the transplant. In all reported cases, the initial symptoms included fever, lethargy, anorexia and leukopenia, and quickly progressed to multisystem organ failure, hepatic insufficiency or severe hepatitis, dysfunction of the transplanted organ, coagulopathy, hypoxia, multiple bacteremias and shock. Localized rash and diarrhea were also seen in some patients. Nearly all cases have been fatal.
In May 2005, four solid-organ transplant recipients contracted an illness that was later diagnosed as lymphocytic choriomeningitis. All received organs from a common donor, and within a month of transplantation, three of the four recipients had died as a result of the viral infection. Epidemiologic investigation traced the source to a pet hamster that the organ donor had recently purchased from a Rhode Island pet store. Similar cases occurred in Massachusetts in 2008, and Australia in 2013. Currently, there is not a LCMV infection test that is approved by the Food and Drug Administration for organ donor screening. The "Morbidity and Mortality Weekly Report" advises health-care providers to "consider LCMV infection in patients with aseptic meningitis and encephalitis and in organ transplant recipients with unexplained fever, hepatitis, or multisystem organ failure."
Tuberculous meningitis is also known as TB meningitis or tubercular meningitis. Tuberculous meningitis is "Mycobacterium tuberculosis" infection of the meninges—the system of membranes which envelop the central nervous system.
Fungal meningitis may be caused by the following (and also other) types of fungi:
- "Candida" - "C. albicans" is the most common "Candida" species causing CNS infection.
- "Coccidioides" - it is endemic to southwestern United States and Mexico. A third of patients presenting with disseminated coccidioidomycosis have developed meningitis.
- "Histoplasma" - occurs in bird and bat droppings and is endemic in parts of the United States, South, and Central America. CNS involvement occurs in 10-20% of disseminated histoplasmosis cases.
- "Blastomyces" - occurs in soil rich in decaying organic matter in the Midwest United States. Meningitis is an unusual manifestation of blastomycosis and can be very difficult to diagnose.
- "Cryptococcus" (Cryptococcal meningitis) - it is thought to be acquired through inhalation of soil contaminated with bird droppings. "C. neoformans" is the most common pathogen to cause fungal meningitis.
- "Aspergillus" - "Aspergillus" infections account for 5% of CNS fungal infections.
Meningitis is a very common in children. Newborns can develop herpes virus infections through contact with infected secretions in the birth canal. Other viral infections are acquired by breathing air contaminated with virus-containing droplets exhaled by an infected person. Arbovirus infections are acquired from bites by infected insects (called epidemic encephalitis). Viral central nervous system infections in newborns and infants usually begin with fever. The inability of infants to communicate directly makes it difficult to understand their symptoms. Newborns may have no other symptoms and may initially not otherwise appear ill. Infants older than a month or so typically become irritable and fussy and refuse to eat. Vomiting is common. Sometimes the soft spot on top of a newborn's head (fontanelle) bulges, indicating an increase in pressure on the brain. Because irritation of the meninges is worsened by movement, an infant with meningitis may cry more, rather than calm down, when picked up and rocked. Some infants develop a strange, high-pitched cry. Infants with encephalitis often have seizures or other abnormal movements. Infants with severe encephalitis may become lethargic and comatose and then die. To make the diagnosis of meningitis or the diagnosis of encephalitis, doctors do a spinal tap (lumbar puncture) to obtain cerebrospinal fluid (CSF) for laboratory analysis in children.
Congential rubella is still a risk with higher risk among immigrant women from countries without adequate vaccination programs.
Sixty percent of mothers of preterm infants are infected with cytomegalovirus (CMV). Infection is asymptomatic in most instances but 9% to 12% of postnatally infected low birth weight, preterm infants have severe, sepsis-like infection. CMV infection duration can be long and result in pneumonitis in association with fibrosis. CMV infection in infants has an unexpected effect on the white blood cells of the immune system causing them to prematurely age. This leads to a reduced immune response similar to that found in the elderly.