Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There have been reports of pulmonary venous thromboembolism in pregnant women with sickle cell trait, or men during prolonged airflight, and mild strokes and abnormalities on PET scans in children with the trait.
Sickle cell trait appears to worsen the complications seen in diabetes mellitus type 2 (retinopathy, nephropathy and proteinuria) and provoke hyperosmolar diabetic coma nephropathy, especially in male patients.
Sickle cell trait provides a survival advantage over people with normal hemoglobin in regions where malaria is endemic. The trait is known to cause significantly fewer deaths due to malaria, especially when "Plasmodium falciparum" is the causative organism. This is a prime example of natural selection, evidenced by the fact that the geographical distribution of the gene for hemoglobin S and the distribution of malaria in Africa virtually overlap. Because of the unique survival advantage, people with the trait become increasingly numerous as the number of malaria-infected people increases. Conversely, people who have normal hemoglobin tend to succumb to the complications of malaria.
Although the precise mechanism for this phenomenon is not known, a several factors are believed to be responsible.
- Infected erythrocytes (red blood cells) tend to have lower oxygen tension, because it is significantly reduced by the parasite. This causes sickling of that particular erythrocyte, signalling the phagocytes to get rid of the cell and hence the parasite within.
- Since the sickling of parasite-infected cells is higher, these selectively get removed by the reticulo-endothelial system, thus sparing the normal erythrocytes.
- Excessive vacuole formation occurs in those parasites infecting sickle cells.
- Sickle trait erythrocytes produce higher levels of the superoxide anion and hydrogen peroxide than normal erythrocytes do, both are toxic to malarial parasites.
The sickle cell trait was found to be 50% protective against mild clinical malaria, 75% protective against admission to the hospital for malaria, and almost 90% protective against severe or complicated malaria.
Thalassemia can coexist with other hemoglobinopathies. The most common of these are:
- Hemoglobin E/thalassemia: common in Cambodia, Thailand, and parts of India, it is clinically similar to β thalassemia major or thalassemia intermedia.
- Hemoglobin S/thalassemia: common in African and Mediterranean populations, is clinically similar to sickle-cell anemia, with the additional feature of splenomegaly.
- Hemoglobin C/thalassemia: common in Mediterranean and African populations, hemoglobin C/β thalassemia causes a moderately severe hemolytic anemia with splenomegaly; hemoglobin C/β thalassemia produces a milder disease.
- Hemoglobin D/thalassemia: common in the northwestern parts of India and Pakistan (Punjab region).
The American College of Obstetricians and Gynecologists recommends all people thinking of becoming pregnant be tested to see if they have thalassemia. Genetic counseling and genetic testing are recommended for families who carry a thalassemia trait.
A screening policy exists in Cyprus to reduce the rate of thalassemia, which, since the program's implementation in the 1970s (which also includes prenatal screening and abortion), has reduced the number of children born with the disease from one of every 158 births to almost zero.
In Iran as a premarital screening, the man's red cell indices are checked first, if he has microcytosis (mean cell hemoglobin < 27 pg or mean red cell volume < 80 fl), the woman is tested. When both are microcytic, their hemoglobin A2 concentrations are measured. If both have a concentration above 3.5% (diagnostic of thalassemia trait) they are referred to the local designated health post for genetic counseling.
Large scale awareness campaigns are being organized in India both by government and non-government organizations in favor of voluntary premarital screening to detect carriers of thalassemia and marriage between both carriers are strongly discouraged.
The highest frequency of sickle cell disease is found in tropical regions, particularly sub-Saharan Africa, tribal regions of India and the Middle-East. Migration of substantial populations from these high prevalence areas to low prevalence countries in Europe has dramatically increased in recent decades and in some European countries sickle-cell disease has now overtaken more familiar genetic conditions such as haemophilia and cystic fibrosis. In 2015, it resulted in about 114,800 deaths.
Sickle-cell disease occurs more commonly among people whose ancestors lived in tropical and sub-tropical sub-Saharan regions where malaria is or was common. Where malaria is common, carrying a single sickle-cell allele (trait) confers a selective advantage—in other words, being a heterozygote is advantageous. Specifically, humans with one of the two alleles of sickle-cell disease show less severe symptoms when infected with malaria.
This condition is inherited in an autosomal recessive pattern, which means both copies of the gene in each cell have mutations. The parents each carry one copy of the mutated gene, but they typically do not show signs and symptoms of the condition.
About 90% of people survive to age 20, and close to 50% survive beyond the fifth decade. In 2001, according to one study performed in Jamaica, the estimated mean survival for people with sickle-cell was 53 years old for men and 58 years old for women with homozygous SCD. The specific life expectancy in much of the developing world is unknown.
In terms of epidemiology, worldwide distribution of inherited alpha-thalassemia corresponds to areas of malaria exposure, suggesting a protective role. Thus, alpha-thalassemia is common in sub-Saharan Africa, the Mediterranean Basin, and generally tropical (and subtropical) regions. The epidemiology of alpha-thalassemia in the US reflects this global distribution pattern. More specifically, HbH disease is seen in Southeast Asia and the Middle East, while Hb Bart hydrops fetalis is acknowledged in Southeast Asia only.
The data indicate that 15% of the Greek and Turkish Cypriots are carriers of beta-thalassaemia genes, while 10% of the population carry alpha-thalassaemia genes.
Overall, hemoglobin C disease is one of the more benign hemoglobinopathies. Mild-to-moderate reduction in RBC lifespan may accompany from mild hemolytic anemia. Individuals with hemoglobin C disease have sporadic episodes of musculoskeletal (joint) pain. People with hemoglobin C disease can expect to lead a normal life.
Hemoglobin C gene is found in 2-3% of US African-Americans while 8% of US African \-Americans have hemoglobin S (Sickle) gene. Thus Hemoglobin SC disease is significantly more common than Hemoglobin CC disease. Hemoglobin C is found in areas of West Africa, such as Nigeria, where Yorubas live.
About 1 out of every 40 African-Americans has hemoglobin C trait. The trait also affects people whose ancestors came from Italy, Greece, Africa, Latin America, and the Caribbean region. However, it is possible for a person of any race or nationality to have hemoglobin C trait. In terms of geographic distribution, the hemoglobin C allele is found at the highest frequencies in West Africa, where it has been associated with protection against malaria. Hemoglobin C disease is present at birth, though some cases may not be diagnosed until adulthood. Both sexes, male and female, are affected equally.
Hemoglobin E is most prevalent in mainland Southeast Asia (Thailand, Myanmar, Cambodia, Laos, Vietnam), where its prevalence can reach 30 or 40%, and Northeast India, where in certain areas carrier rates reach 60% of the population. In Thailand the mutation can reach 50 or 70%, and it is higher in the northeast of the country. In Sri Lanka, it can reach up to 40% and affects those of Sinhalese and Vedda descent. It is also found at high frequencies in Bangladesh and Indonesia. The trait can also appear in people of Turkish, Chinese and Filipino descent. The mutation is estimated to have arisen within the last 5,000 years. In Europe there have been found cases of families with hemoglobin E, but in these cases, the mutation differs from the one found in South-East Asia. This means that there may be different origins of the βE mutation.
People who have hemoglobin E/β-thalassemia have inherited one gene for hemoglobin E from one parent and one gene for β-thalassemia from the other parent. Hemoglobin E/β-thalassemia is a severe disease, and it still has no universal cure. It affects more than a million people in the world. The consequences of hemoglobin E/β-thalassemia when it is not treated can be heart failure, enlargement of the liver, problems in the bones, etc.
There is a variety of genotypes depending on the interaction of HbE and α-thalassemia. The presence of the α-thalassemia reduces the amount of HbE usually found in HbE heterozygotes. In other cases, in combination with certain thalassemia mutations, it provides an increased resistance to malaria ("P. falciparum").
Hemoglobinopathy is a kind of genetic defect that results in abnormal structure of one of the globin chains of the hemoglobin molecule. Hemoglobinopathies are inherited single-gene disorders; in most cases, they are inherited as autosomal co-dominant traits. Common hemoglobinopathies include sickle-cell disease. It is estimated that 7% of world's population (420 million) are carriers, with 60% of total and 70% pathological being in Africa. Hemoglobinopathies are most common in populations from Africa, the Mediterranean basin and Southeast Asia.
Hemoglobinopathies imply structural abnormalities in the globin proteins themselves. Thalassemias, in contrast, usually result in underproduction of normal globin proteins, often through mutations in regulatory genes. The two conditions may overlap, however, since some conditions which cause abnormalities in globin proteins (hemoglobinopathy) also affect their production (thalassemia). Thus, some hemoglobinopathies are also thalassemias, but most are not.
Either hemoglobinopathy or thalassemia, or both, may cause anemia. Some well-known hemoglobin variants such as sickle-cell anemia and congenital dyserythropoietic anemia are responsible for diseases, and are considered hemoglobinopathies. However, many hemoglobin variants do not cause pathology or anemia, and thus are often not classed as hemoglobinopathies, because they are not considered pathologies. Hemoglobin variants are a part of the normal embryonic and fetal development, but may also be pathologic mutant forms of hemoglobin in a population, caused by variations in genetics. Other variants cause no detectable pathology, and are thus considered non-pathological variants.
Some hemoglobinopathies (and also related diseases like glucose-6-phosphate dehydrogenase deficiency) seem to have given an evolutionary benefit, especially to heterozygotes, in areas where malaria is endemic. Malaria parasites live inside red blood cells, but subtly disturb normal cellular function. In patients predisposed for rapid clearance of red blood cells, this may lead to early destruction of cells infected with the parasite and increased chance of survival for the carrier of the trait.
Hemoglobin functions:
- Transport of oxygen from the lungs to the tissues: This is due to the peculiar cooperation of the globin chains that allows the molecule to take in more oxygen where there is increased oxygen and to release oxygen in low concentration of oxygen.
- Transport of carbon dioxide from the tissues to the lungs: The end product of tissue metabolism is acidic which increases hydrogen ions in solution. The hydrogen ions combine with bicarbonates to produce water and carbon dioxide. The carbon dioxide is mop up by hemoglobin to favor this reversible reaction.
- Transport of nitric oxide: Nitric oxide is a vasodilatator. This assists in the regulation of vascular reaction in times of stress as experienced during inflammation.
Pathology and organic structural abnormalities may lead to any of the following disease processes:
- Anemia due to reduced life span of the red cells of reduced production of the cells e. g. hemoglobin S, C and E.
- Increased oxygen affinity: The red blood cells do not release their oxygen content readily in hypoxic conditions. The bone marow therefore needs to produce more red blood cells and there is polycythemia.
- Unstable hemoglobins: Red blood cells are easily destroyed under stress and hemolysis occurs with possible jaundice.
- Methemoglobinemia: The iron in the heme portion of hemoglobin is easily oxidised and this reduces the ability of hemoglobin to bind oxygen. More deoxygenated hemoglobin are formed and the blood becomes cyanotic.
In terms of treatment for delta-beta thalassemia one possible concern would be anemia, where, therefore, blood transfusions would be given to the affected individual (though blood transfusions might introduce complications, as well).
Stem cell transplant is another option, but the donor and the individual who will receive the bone marrow transplant must be compatible, the risks involved should be evaluated, as well
Two genetic loci exist for α globin, thus four genes are in diploid cells. Two genes are maternal and two genes are paternal in origin. The severity of the α-thalassemias is correlated with the number of affected α-globin; genes: the greater, the more severe will be the manifestations of the disease. When noting the genotype, an "α" indicates a functional alpha chain.
An individual with delta-beta thalassemia is usually asymptomatic, however microcytosis can occur where the red blood cells are abnormally small.
HPFH may alleviate the severity of certain hemoglobinopathies and thalassemias, and is selected for in populations with a high prevalence of these conditions (which in turn are often selected for in areas where malaria is endemic). Thus, it has been found to affect Americans of African and Greek descent.
In persons with sickle cell disease, high levels of fetal hemoglobin as found in a newborn or as found abnormally in persons with hereditary persistence of fetal hemoglobin, the HbF causes the sickle cell disease to be less severe. In essence the HbF inhibits polymerization of HbS. A similar mechanism occurs with persons who have sickle cell "trait". Approximately 40% of the hemoglobin is in the HbS form while the rest is in normal HbA form. The HbA form interferes with HbS polymerization.
Repetitive impacts to the body may cause mechanical trauma and bursting (hemolysis) of red blood cells. This has been documented to have occurred in the feet during running and hands from Conga or Candombe drumming. Defects in red blood cell membrane proteins have been identified in some of these patients. Free haemoglobin is released from lysed red blood cells and filtered into the urine.
Microcytosis is a condition in which red blood cells are unusually small as measured by their mean corpuscular volume.
It is also known as "microcythemia". When associated with anemia, it is known as microcytic anemia.
Microcytic anemia is not caused by reduced DNA synthesis.
Thalassemia can cause microcytosis. Depending upon how the terms are being defined, thalassemia can be considered a cause of microcytic anemia, or it can be considered a cause of microcytosis but not a cause of microcytic anemia.
There are many causes of microcytosis, which is essentially only a descriptor. Cells can be small because of mutations in the formation of blood cells (hereditary microcytosis) or because they are not filled with enough hemoglobin, as in iron-deficiency-associated microcytosis.
Red blood cells can be characterised by their haemoglobin content as well as by their size. The haemoglobin content is referred to as the cell's colour. Therefore, there are both "normochromic microcytotic red cells" and "hypochromic, microcytotic red cells". The normochromic cells have a normal concentration of haemoglobin, and are therefore 'red enough' while the hypochromic cells do not; thus the value of the mean corpuscular hemoglobin concentration.
Runner’s macrocytosis is a phenomenon of increased red blood cell size as a compensatory mechanism for increased red blood cell turnover. The impact forces from running can lead to red blood cell hemolysis and accelerate red blood cell production. This can shift the ratio of red blood cells towards younger, larger cells. This shift may be reflected in higher than normal mean corpuscular volume (MCV) values, an indicator of red blood cell size.
This is not a pathological condition but may indicate a propensity toward iron deficiency anemia due to high red blood cell turnover.
Hemoglobin Barts, abbreviated Hb Barts, is an abnormal type of hemoglobin that consists of four gamma globins. It is moderately insoluble, and therefore accumulates in the red blood cells. It has an extremely high affinity for oxygen, resulting in almost no oxygen delivery to the tissues. As an embryo develops, it begins to produce alpha-globins at weeks 5-6 of development. When both HBA1 and HBA2, the two genes that code for alpha globins, are non-functional, only gamma globins are produced. These gamma globins bind to form hemoglobin Barts. It is produced in the disease alpha-thalassemia and in the most severe of cases, it is the only form of haemoglobin in circulation. In this situation, a fetus will develop hydrops fetalis and normally die before or shortly after birth, unless intrauterine blood transfusion is performed.
Since hemoglobin Barts is elevated in alpha thalassaemia, it can be measured, providing a useful screening test for this disease in some populations.
The ability to measure hemoglobin Barts makes it useful in newborn screening tests. If hemoglobin Barts is detected on a newborn screen, the patient is usually referred for further evaluation since detection of hemoglobin Barts can indicate either one alpha globin gene deletion, making the baby a silent alpha thalassemia carrier, two alpha globin gene deletions (alpha thalassemia), or hemoglobin H disease (three alpha globin gene deletions). Deletion of four alpha globin genes is not compatible with life.
This variant of hemoglobin is so called as it was discovered at St. Bartholomew's Hospital in London, also called St. Barts.
There have been few individual epidemiological studies of CMML, due to the difficulty in the disease classification. CMML has an estimated incidence of less than 1 per 100,000 persons per year.
The median age of diagnosis is 65–75. CMML has a propensity for males rather than females, at a ratio of 1.5–3:1.
The Düsseldorf score stratifies cases using four categories, giving one point for each; bone marrow blasts ≥5%, LDH >200U/L, haemoglobin ≤9g/dL and a platelet count ≤100,000/uL. A score of 0 indicates a low risk group' 1-2 indicates an intermediate risk group and 3-4 indicates a high risk group. The cumulative 2 year survival of scores 0, 1-2 and 3-4 is 91%, 52% and 9%; and risk of AML transformation is 0%, 19% and 54% respectively.