Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Acute respiratory distress syndrome (ARDS) has some similarities to IRDS. Transient tachypnea of the newborn presents with respiratory distress syndrome in the preterm newborn.
Giving the mother glucocorticoids speeds the production of surfactant. For very premature deliveries, a glucocorticoid is given without testing the fetal lung maturity. The American College of Obstetricians and Gynecologists (ACOG), Royal College of Medicine, and other major organizations have recommended antenatal glucocorticoid treatment for women at risk for preterm delivery prior to 34 weeks of gestation. Multiple courses of glucocorticoid administration, compared with a single course, does not seem to increase or decrease the risk of death or neurodevelopmental disorders of the child.
In pregnancies of greater than 30 weeks, the fetal lung maturity may be tested by sampling the amount of surfactant in the amniotic fluid by amniocentesis, wherein a needle is inserted through the mother's abdomen and uterus. Several tests are available that correlate with the production of surfactant. These include the lecithin-sphingomyelin ratio ("L/S ratio"), the presence of phosphatidylglycerol (PG), and more recently, the surfactant/albumin (S/A) ratio. For the L/S ratio, if the result is less than 2:1, the fetal lungs may be surfactant deficient. The presence of PG usually indicates fetal lung maturity. For the S/A ratio, the result is given as mg of surfactant per gm of protein. An S/A ratio 55 indicates mature surfactant production(correlates with an L/S ratio of 2.2 or greater).
Hepatic microvascular dysplasia (HMD or MVD) or portal atresia is a disorder where mixing of venous blood and arterial blood in the liver occurs at the microscopic level. It occurs most commonly in certain dog breeds such as the Cairn and Yorkshire terriers although any dog breed may be at risk.
This disease may also be found in cats.
HMD is sometimes misdiagnosed as Portosystemic vascular anomaly (PSVA) or a "Liver Shunt" (portosystemic shunt). HMD can be diagnosed with an MRI, using a tracing dye in the subject's blood, and observing the flow of blood through the subject's liver and surrounding areas (stomach, intestine) for anomalies. It can also be diagnosed using a bile-acid level test; or more accurately, a "fasting-blood ammonia levels" test. Symptoms include stunted growth in the first 6–9 months, vomiting, seizures, and hydro-encephalitic episodes (from ammonia concentrating in the blood). HMD is usually treated non-surgically with antibiotics (metronidazole) and stool-softeners (lactulose).
Hereditary mucoepithelial dysplasia (HMD), or simply mucoepithelial dysplasia, is a rare autosomal dominant multiepithelial disorder causing systemic maldevelopment of the epithelia and mucous membranes that line the surface of tissues and structures throughout the body, particularly affecting systems affiliated with mucosa, which includes the respiratory, digestive, urinary, reproductive and immune systems. The disorder is attributed to improper formation of desmosomes and gap junctions, which prevents proper cornification of the epithelial layer of the skin.
Desmosomes are extracellular protein structures responsible for cellular adhesion, whereby cells of the same type are held closely together. Gap junctions are specialized channels located within the cell membrane of many animal cell types, which serve as gateways that connect the cytoplasmic interior of two adjacent cells, allowing the passage of small molecules such as ions, nucleotides, second messengers and others. The movement and exchange of small molecules between cells is an important part of intracellular communication processes like cell signaling.