Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Approximately 10–25 percent of cases are estimated to result from the use of medications. This is known as non-physiologic gynecomastia. Medications known to cause gynecomastia include ketoconazole, cimetidine, gonadotropin-releasing hormone analogues, human growth hormone, human chorionic gonadotropin, 5α-Reductase inhibitors such as finasteride and dutasteride, estrogens such as those used in transgender women and men with prostate cancer, and antiandrogens such as bicalutamide, flutamide, and spironolactone. Medications that are probably associated with gynecomastia include calcium channel blockers such as verapamil, amlodipine, and nifedipine; risperidone, olanzapine, anabolic steroids, alcohol, opioids, efavirenz, alkylating agents, and omeprazole. Certain components of personal care products such as lavender or tea tree oil and certain supplements such as dong quai and "Tribulus terrestris" have been associated with gynecomastia.
Gynecomastia is thought to be caused by an altered ratio of estrogens to androgens mediated by an increase in estrogen production, a decrease in androgen production, or a combination of these two factors. Estrogen acts as a growth hormone to increase the size of male breast tissue. The cause of gynecomastia is unknown in around 25% of cases. Drugs are estimated to cause 10–25% of cases of gynecomastia.
Certain health problems in men such as liver disease, kidney failure or low testosterone can cause breast growth in men. Drugs and liver disease are the most common cause in adults. Other medications such as methadone, aldosterone antagonists (spironolactone and epelerenone), HIV medication, cancer chemotherapy, hormone treatment for prostate cancer, heartburn and ulcer medications, calcium channel blockers, antifungal medications such as ketoconazole, antibiotics such as metronidazole, tricyclic antidepressants such as amitriptyline, herbals such as lavender, tea tree oil, and dong quai are also known to cause gynecomastia. Phenothrin, an insecticide, possesses antiandrogen activity, and has been associated with gynecomastia.
Several treatments have been found to be effective in managing AES, including aromatase inhibitors and gonadotropin-releasing hormone analogues in both sexes, androgen replacement therapy with non-aromatizable androgens such as DHT in males, and progestogens (which, by virtue of their antigonadotropic properties at high doses, suppress estrogen levels) in females. In addition, male patients often seek bilateral mastectomy, whereas females may opt for breast reduction if warranted.
Medical treatment of AES is not absolutely necessary, but it is recommended as the condition, if left untreated, may lead to excessively large breasts (which may necessitate surgical reduction), problems with fertility, and an increased risk of endometriosis and estrogen-dependent cancers such as breast and endometrial cancers later in life. At least one case of male breast cancer has been reported.
The root cause of AES is not entirely clear, but it has been elucidated that inheritable, autosomal dominant genetic mutations affecting "CYP19A1", the gene which encodes aromatase, are involved in its etiology. Different mutations are associated with differential severity of symptoms, such as mild to severe gynecomastia.
A case report of male breast cancer subsequent to bicalutamide-induced gynecomastia has been published. According to the authors, "this is the second confirmed case of breast cancer in association with bicalutamide-induced gynaecomastia (correspondence AstraZeneca)." It is notable, however, that gynecomastia does not seem to increase the risk of breast cancer in men. Moreover, the lifetime incidence of breast cancer in men is approximately 0.1%, the average age of diagnosis of prostate cancer and male breast cancer are similar (around 70 years), and millions of men have been treated with bicalutamide for prostate cancer, all of which are potentially in support of the notion of chance co-occurrences. In accordance, the authors concluded that "causality cannot be established" and that it was "probable that the association is entirely coincidental and sporadic."
Because bicalutamide blocks the , like all antiandrogens, it can interfere with the androgen-mediated sexual differentiation of the genitalia (and brain) during prenatal development. In pregnant rats given bicalutamide at a dosage of 10 mg/kg/day (resulting in circulating drug levels approximately equivalent to two-thirds of human therapeutic concentrations) and above, feminization of male offspring, such as reduced anogenital distance and hypospadias, as well as impotence, were observed. No other teratogenic effects were observed in rats or rabbits receiving up to very high dosages of bicalutamide (that corresponded to up to approximately two times human therapeutic levels), and no teratogenic effects of any sort were observed in female rat offspring at any dosage. As such, bicalutamide is a selective reproductive teratogen in males, and may have the potential to produce undervirilization/sexually ambiguous genitalia in male fetuses.
Males and females may be treated with hormone replacement therapy (i.e., with androgens and estrogens, respectively), which will result in normal sexual development and resolve most symptoms. In the case of 46,XY (genetically male) individuals who are phenotypically female and/or identify as the female gender, they should be treated with estrogens instead. Removal of the undescended testes should be performed in 46,XY females to prevent their malignant degeneration, whereas in 46,XY males surgical correction of the genitals is generally required, and, if necessary, an orchidopexy (relocation of the undescended testes to the scrotum) may be performed as well. Namely in genetic females presenting with ovarian cysts, GnRH analogues may be used to control high FSH and LH levels if they are unresponsive to estrogens.
Isolated 17,20-lyase deficiency is caused by genetic mutations in the gene "CYP17A1", which encodes for 17,20-lyase, while not affecting 17α-hydroxylase, which is encoded by the same gene.
Observed physiological abnormalities of the condition include markedly elevated serum levels of progestogens such as progesterone and 17α-hydroxyprogesterone (due to upregulation of precursor availability for androgen and estrogen synthesis), very low or fully absent peripheral concentrations of androgens such as dehydroepiandrosterone (DHEA), androstenedione, and testosterone and estrogens such as estradiol (due to the lack of 17,20-lyase activity, which is essential for their production), and high serum concentrations of the gonadotropins, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) (due to a lack of negative feedback on account of the lack of sex hormones).
All forms of androgen insensitivity are associated with infertility, though exceptions have been reported for both the mild and partial forms. Lifespan is not thought to be affected by AIS.
Approximately 1 in 20,000 individuals with a male appearance have 46,XX testicular disorder.
At puberty, most affected individuals require treatment with the male sex hormone testosterone to induce development of male secondary sex characteristics such as facial hair and deepening of the voice (masculinization). Hormone treatment can also help prevent breast enlargement (gynecomastia). Adults with this disorder are usually shorter than average for males and are unable to have children (infertile).
Due to its mild presentation, MAIS often goes unnoticed and untreated. Management of MAIS is currently limited to symptomatic management; methods to correct a malfunctioning androgen receptor protein that result from an AR gene mutation are not currently available. Treatment includes surgical correction of mild gynecomastia, minor hypospadias repair, and testosterone supplementation. Supraphysiological doses of testosterone have been shown to correct diminished secondary sexual characteristics in men with MAIS, as well as to reverse infertility due to low sperm count. As is the case with PAIS, men with MAIS will experience side effects from androgen therapy (such as the suppression of the hypothalamic-pituitary-gonadal axis) at a higher dosage than unaffected men. Careful monitoring is required to ensure the safety and efficacy of treatment. Regular breast and prostate examinations may be necessary due to comorbid association with breast and prostate cancers.
Estrogen insensitivity syndrome (EIS), or estrogen resistance, is a form of congenital estrogen deficiency or hypoestrogenism which is caused by a defective estrogen receptor (ER) – specifically, the estrogen receptor alpha (ERα) – that results in an inability of estrogen to mediate its biological effects in the body. Congenital estrogen deficiency can alternatively be caused by a defect in aromatase, the enzyme responsible for the biosynthesis of estrogens, a condition which is referred to as aromatase deficiency and is similar in symptomatology to EIS.
EIS is an extremely rare occurrence. As of 2016, there have been three published reports of EIS, involving a total of five individuals. The reports include a male case published in 1994, a female case published in 2013, and a familial case involving two sisters and a brother which was published in 2016.
EIS is analogous to androgen insensitivity syndrome (AIS), a condition in which the androgen receptor (AR) is defective and insensitive to androgens, such as testosterone and dihydrotestosterone (DHT). The functional opposite of EIS is hyperestrogenism, for instance that seen in aromatase excess syndrome.
Gonadectomy at time of diagnosis is the current recommendation for PAIS if presenting with cryptorchidism, due to the high (50%) risk of germ cell malignancy. The risk of malignancy when testes are located intrascrotally is unknown; the current recommendation is to biopsy the testes at puberty, allowing investigation of at least 30 seminiferous tubules, with diagnosis preferably based on OCT3/4 immunohistochemistry, followed by regular examinations. Hormone replacement therapy is required after gonadectomy, and should be modulated over time to replicate the hormone levels naturally present in the body during the various stages of puberty. Artificially induced puberty results in the same, normal development of secondary sexual characteristics, growth spurt, and bone mineral accumulation. Women with PAIS may have a tendency towards bone mineralization deficiency, although this increase is thought to be less than is typically seen in CAIS, and is similarly managed.
In contrast to EIS, androgen insensitivity syndrome (AIS), a condition in which the androgen receptor (AR) is defective, is relatively common. This can be explained by the genetics of each syndrome. AIS is a X-linked recessive condition and thus carried over, by females, into future generations (although the most severe form, complete androgen insensitivity syndrome (CAIS), results in sterility, and hence cannot be passed on to offspring). EIS is not compatible with reproduction, thus each occurrence in humans would have to be a "de novo" mutation and is not transmitted to offspring.
Management of AIS is currently limited to symptomatic management; methods to correct a malfunctioning androgen receptor protein that result from an AR gene mutation are not currently available. Areas of management include sex assignment, genitoplasty, gonadectomy in relation to tumor risk, hormone replacement therapy, and genetic and psychological counseling.
Hyperestrogenism can be caused by ovarian tumors, genetic conditions such as aromatase excess syndrome (also known as familial hyperestrogenism), or overconsumption of exogenous sources of estrogen, including medications used in hormone replacement therapy and hormonal contraception. Liver cirrhosis is another cause, though through lowered metabolism of estrogen, not oversecretion or overconsumption like the aforementioned.
Hypoandrogenism is caused primarily by either dysfunction, failure, or absence of the gonads ("hypergonadotropic") or impairment of the hypothalamus or pituitary gland ("hypogonadotropic"), which in turn can be caused by a multitude of different stimuli, including genetic conditions (e.g., GnRH/gonadotropin insensitivity and enzymatic defects of steroidogenesis), tumors, trauma, surgery, autoimmunity, radiation, infections, toxins, drugs, and many others. Alternatively, it may be the result of conditions such as androgen insensitivity syndrome or hyperestrogenism. More simply, old age may also be a factor in the development of hypoandrogenism, as androgen levels decline with age.
Treatment may consist of surgery in the case of tumors, lower doses of estrogen in the case of exogenously-mediated estrogen excess, and estrogen-suppressing medications like gonadotropin-releasing hormone analogues and progestogens. In addition, androgens may be supplemented in the case of males.
An estrogen-dependent condition, disease, disorder, or syndrome, is a medical condition that is, in part or full, dependent on, or is sensitive to, the presence of estrogenic activity in the body.
Known estrogen-dependent conditions include mastodynia (breast pain/tenderness), breast fibroids, mammoplasia (breast enlargement), macromastia (breast hypertrophy), gynecomastia, breast cancer, precocious puberty in girls, melasma, menorrhagia, endometriosis, endometrial hyperplasia, adenomyosis, uterine fibroids, uterine cancers (e.g., endometrial cancer), ovarian cancer, and hyperestrogenism in males such as in certain conditions like cirrhosis and Klinefelter's syndrome.
Such conditions may be treated with drugs with antiestrogen actions, including selective estrogen receptor modulators (SERMs) such as tamoxifen and clomifene, estrogen receptor antagonists such as fulvestrant, aromatase inhibitors such as anastrozole and exemestane, gonadotropin-releasing hormone (GnRH) analogues such as leuprolide and cetrorelix, and/or other antigonadotropins such as danazol, gestrinone, megestrol acetate, and medroxyprogesterone acetate.
Adipomastia, or lipomastia, also known colloquially as fatty breasts, is a condition defined as an excess of skin and adipose tissue in the breasts without true breast glandular tissue. It is commonly present in men with obesity, and is particularly apparent in men who have undergone massive weight loss. A related/synonymous term is pseudogynecomastia. The condition is different and should be distinguished from gynecomastia ("women's breasts"), which involves true glandular breast development in a male. The two conditions can usually be distinguished easily by palpation to check for the presence of glandular tissue. Another difference between the conditions is that breast pain/tenderness does not occur in pseudogynecomastia. Sometimes, gynecomastia and pseudogynecomastia are present together; this is related to the fact that fat tissue expresses aromatase, the enzyme responsible for the synthesis of estrogen, and estrogen is produced to a disproportionate extent in men with excessive amounts of fat, resulting in simultaneous glandular enlargement.
Androgen deficiency is not usually checked for diagnosis in healthy women.
Familial male-limited precocious puberty, often abbreviated as FMPP, also known as familial sexual precocity or gonadotropin-independent testotoxicosis, is a form of gonadotropin-independent precocious puberty in which boys experience early onset and progression of puberty. Signs of puberty can develop as early as an age of 1 year.
The spinal length in boys may be short due to a rapid advance in epiphyseal maturation. It is an autosomal dominant condition with a mutation of the luteinizing hormone (LH) receptor. Treatment is with drugs that suppress gonadal steroidogenesis, such as cyproterone acetate, ketoconazole, spironolactone, and testolactone. Alternatively, the combination of the androgen receptor antagonist bicalutamide and the aromatase inhibitor anastrozole may be used.
Breast atrophy is the normal or spontaneous atrophy or shrinkage of the breasts.
Breast atrophy commonly occurs in women during menopause when estrogen levels decrease. It can also be caused by hypoestrogenism and/or hyperandrogenism in women in general, such as in antiestrogen treatment for breast cancer, in polycystic ovary syndrome (PCOS), and in malnutrition such as that associated with eating disorders like anorexia nervosa or with chronic disease. It can also be an effect of weight loss.
In the treatment of gynecomastia in males and macromastia in women, and in hormone replacement therapy (HRT) for trans men, breast atrophy may be a desired effect.
Examples of treatment options for breast atrophy, depending on the situation/when appropriate, can include estrogens, antiandrogens, and proper nutrition or weight gain.
In 2012, a 5-generation Dutch family consisting of 7 males and 7 females with Wilson-Turner Syndrome. These individuals had some characteristics that differed from the stated phenotype mentioned by Wilson. These individuals have a larger stature, head, and chin, in addition to coarse facial features. Unlike the females in Wilson's study, these females shown signs of being affected, although less severe than their male counterparts. None of the men could live on their own. Studies verified that the phenotype of the disorder range on a large scale and can affect everyone differently. This research group also used next-generation sequencing of the X chromosome exome to identify the HDAC8 gene mutation
There is also ongoing research to determine the cause of the decreased or low androgen levels. It is studying the possible disturbance of the hypothalamic-pituitary-gonadal axis because of the low levels of androgen are combined with normal levels of FSH and LH.