Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Infant mortality is high for patients diagnosed with early onset; mortality can occur within less than 2 months, while children diagnosed with late-onset syndrome seem to have higher rates of survival. Patients suffering from a complete lesion of mut0 have not only the poorest outcome of those suffering from methylaonyl-CoA mutase deficiency, but also of all individuals suffering from any form of methylmalonic acidemia.
No sexual predilection is observed because the deficiency of glycogen synthetase activity is inherited as an autosomal recessive trait.
The major morbidity is a risk of fasting hypoglycemia, which can vary in severity and frequency. Major long-term concerns include growth delay, osteopenia, and neurologic damage resulting in developmental delay, intellectual deficits, and personality changes.
That MMA can have disastrous effects on the nervous system has been long reported; however, the mechanism by which this occurs has never been determined. Published on June 15th 2015, research performed on the effects of methylmalonic acid on neurons isolated from fetal rats in an in vitro setting using a control group of neurons treated with an alternate acid of similar pH. These tests have suggested that methylmalonic acid causes decreases in cellular size and increase in the rate of cellular apoptosis in a concentration dependent manner with more extreme effects being seen at higher concentrations. Furthermore, micro-array analysis of these treated neurons have also suggested that on a epigenetic-level methylmalonic acid alters the transcription rate of 564 genes, notably including those involved in the apoptosis, p53, and MAPK signaling pathways.
The prevalence of Molybdenum co-factor deficiency is estimated as being between 1 in 100 000 and 1 in 200 000. To date more than 100 cases have been reported. However, this may significantly under represent cases.
Overall, according to a study in British Columbia, approximately 2.3 children per 100,000 births (1 in 43,000) have some form of glycogen storage disease. In the United States, they are estimated to occur in 1 per 20,000–25,000 births. Dutch incidence rate is estimated to be 1 per 40,000 births.
Enolase Deficiency is a rare genetic disorder of glucose metabolism. Partial deficiencies have been observed in several caucasian families. The deficiency is transmitted through an autosomal dominant inheritance pattern. The gene for Enolase 1 has been localized to Chromosome 1 in humans. Enolase deficiency, like other glycolytic enzyme deficiences, usually manifests in red blood cells as they rely entirely on anaerobic glycolysis. Enolase deficiency is associated with a spherocytic phenotype and can result in hemolytic anemia, which is responsible for the clinical signs of Enolase deficiency.
The addition of SPCD to newborn screening panels has offered insight into the incidence of the disorder around the world. In Taiwan, the incidence of SPCD in newborns was estimated to be approximately 1:67,000, while maternal cases were identified at a higher frequency of approximately 1:33,000. The increased incidence of SPCD in mothers compared to newborns is not completely understood. Estimates of SPCD in Japan have shown a similar incidence of 1:40,000. Worldwide, SPCD has the highest incidence in the relatively genetically isolated Faroe Islands, where an extensive screening program was instituted after the sudden death of two teenagers. The incidence in the Faroe Islands is approximately 1:200.
The term fatty acid oxidation disorder (FAOD) is sometimes used, especially when there is an emphasis on the oxidation of the fatty acid.
In addition to the fetal complications, they can also cause complications for the mother during pregnancy.
Examples include:
- trifunctional protein deficiency
- MCADD, LCHADD, and VLCADD
Galactose epimerase deficiency, also known as GALE deficiency, Galactosemia III and UDP-galactose-4-epimerase deficiency, is a rare, autosomal recessive form of galactosemia associated with a deficiency of the enzyme "galactose epimerase".
Canine phosphofructokinase deficiency is found mostly in English Springer Spaniels and American Cocker Spaniels, but has also been reported in Whippets and Wachtelhunds. Mixed-breed dogs descended from any of these breeds are also at risk to inherit PFK deficiency.
Recent case studies in several patients presenting nonresponsive mut0 MMA with a specific mutation designated p.P86L have suggest the possibility of further subdivision in mut type MMA might exist. Though currently unclear if this is due to the specific mutation or early detection and treatment, despite complete nonresponse to cobalamin supplements, these individuals appeared to develop a largely benign and near completely asymptomatic version of MMA. Despite consistently showing elevated methylmalonic acid in the blood and urine, these individuals appeared for the large part developmentally normal.
There is a deficiency of malate in patients because fumarase enzyme can't convert fumarate into it therefore treatment is with oral malic acid which will allow the krebs cycle to continue, and eventually make ATP.
As of June 2014 (the latest update on HFM in GeneReviews) a total of 32 families had been reported with a clinical diagnosis of HFM of which there was genotypic confirmation in 24 families. Since then, another two confirmed cases have been reported and an additional case was reported based on a clinical diagnosis alone. Most cases emerge from consanguineous parents with homozygous mutations. There are three instances of HFM from non-consanguineous parents in which there were heterozygous mutations. HFM cases are worldwide with mostly private mutations. However, a number of families of Puerto Rican ancestry have been reported with a common pathogenic variant at a splice receptor site resulting in the deletion of exon 3 and the absence of transport function. A subsequent population-based study of newborn infants in Puerto Rico identified the presence of the same variant on the island. Most of the pathogenic variants result in a complete loss of the PCFT protein or point mutations that result in the complete loss of function. However, residual function can be detected with some of the point mutants.
In 2009, Monash Children's Hospital at Southern Health in Melbourne, Australia reported that a patient known as Baby Z became the first person to be successfully treated for molybdenum cofactor deficiency type A. The patient was treated with cPMP, a precursor of the molybdenum cofactor. Baby Z will require daily injections of cyclic pyranopterin monophosphate (cPMP) for the rest of her life.
Glycerol Kinase Deficiency (GKD) is an X-linked recessive enzyme defect that is heterozygous in nature. Three clinically distinct forms of this deficiency have been proposed, namely infantile, juvenile, and adult. National Institutes of Health and its Office of Rare Diseases Research (ORDR) branch classifies GKD as a rare disease, known to affect fewer than 200,000 individuals in the United States. The responsible gene lies in a region containing genes in which deletions can cause Duchenne muscular dystrophy and adrenal hypoplasia congenita. Combinations of these three genetic defects including GKD are addressed medically as Complex GKD.
Fumarase deficiency is caused by a mutation in the fumarate hydratase (FH) gene in humans, which encodes the enzyme that converts fumarate to malate in the mitochondria. Other mutant alleles of the FH gene, located on human Chromosome 1 at position 1q42.1, cause multiple cutaneous and uterine leiomyomata, hereditary leiomyomatosis and renal cell cancer. Fumarase deficiency is one of the few known deficiencies of the Krebs cycle or tricarboxylic acid cycle, the main enzymatic pathway of cellular aerobic respiration.
The condition is an autosomal recessive disorder, and it is therefore usually necessary for an affected individual to receive the mutant allele from both parents. A number of children diagnosed with the disorder have been born to parents who were first cousins. It can also be associated with uniparental isodisomy.
Glycerol Kinase Deficiency has two main causes associated with it.
- The first cause is isolated enzyme deficiency. The enzyme glycerol kinase is encoded by the X-chromosome in humans. It acts as a catalyst in the phosphorylation of glycerol to glycerol-3-phosphate which plays a key role in formation of triacylglycerol (TAG) and fat storage. There is no genotype–phenotype correlation in isolated GKD and it can be either symptomatic or asymptomatic. Symptomatic means that GKD shows symptoms when it persists in the body and asymptomatic means that the no symptoms appear in the body. In this deficiency the genotype is not associated with the phenotype. The presence of certain mutations in genes has no relation with the phenotype i.e. any resulting physical traits or abnormality.
- The second cause is a deletion or mutation of a single gene. GKD is described by mendelian inheritance and is an X-linked recessive trait due to which it occurs mainly in males and occasionally in females. GKD results when the glycerol kinase gene present on the locus Xp21 of the X chromosome is either deleted or mutated. Females have two X chromosomes and males have one X and one Y chromosome .The expression of recessive genes on the X chromosome is different in males and females. This is due to the fact that genes present on the Y chromosome do not pair up with genes on the X chromosome in males. In females the disorder is expressed only when there are two copies of the affected gene present on each X chromosome but since the glycerol kinase gene is present only on one X chromosome the disorder is not expressed in women. Women have a second good copy that can compensate for the defect on the first copy. On the other hand, males only need a single copy of the recessive gene for the disorder to be expressed. They do not have a second copy that can protect against any defect on the first copy.
In order to get Tarui’s disease, both parents must be carriers of the genetic defect so that the child is born with the full form of the recessive trait. The best indicator of risk is a family member with PFK deficiency.
D-Bifunctional protein deficiency (officially called 17β-hydroxysteroid dehydrogenase IV deficiency) is an autosomal recessive peroxisomal fatty acid oxidation disorder. Peroxisomal disorders are usually caused by a combination of peroxisomal assembly defects or by deficiencies of specific peroxisomal enzymes. The peroxisome is an organelle in the cell similar to the lysosome that functions to detoxify the cell. Peroxisomes contain many different enzymes, such as catalase, and their main function is to neutralize free radicals and detoxify drugs, such as alcohol. For this reason peroxisomes are ubiquitous in the liver and kidney. D-BP deficiency is the most severe peroxisomal disorder, often resembling Zellweger syndrome.
Characteristics of the disorder include neonatal hypotonia and seizures, occurring mostly within the first month of life, as well as visual and hearing impairment. Other symptoms include severe craniofacial disfiguration, psychomotor delay, and neuronal migration defects. Most onsets of the disorder begin in the gestational weeks of development and most affected individuals die within the first two years of life.
Incomplete list of various fatty-acid metabolism disorders.
- Carnitine Transport Defect
- Carnitine-Acylcarnitine Translocase (CACT) Deficiency
- Carnitine Palmitoyl Transferase I & II (CPT I & II) Deficiency
- 2,4 Dienoyl-CoA Reductase Deficiency
- Electron Transfer Flavoprotein (ETF) Dehydrogenase Deficiency (GAII & MADD)
- 3-Hydroxy-3 Methylglutaryl-CoA Lyase (HMG) Deficiency
- Very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCAD deficiency)
- Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency (LCHAD deficiency)
- Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCAD deficiency)
- Short-chain acyl-coenzyme A dehydrogenase deficiency (SCAD deficiency)
- 3-hydroxyacyl-coenzyme A dehydrogenase deficiency (M/SCHAD deficiency)
Individuals presenting with Type III galactosemia must consume a lactose- and galactose-restricted diet devoid of dairy products and mucilaginous plants. Dietary restriction is the only current treatment available for GALE deficiency. As glycoprotein and glycolipid metabolism generate endogenous galactose, however, Type III galactosemia may not be resolved solely through dietary restriction.
Genetics is found to be the cause of enolase deficiency. The individual in the first known case of this deficiency was heterozygous for the gene for β-enolase, and carried two missense mutations, one inherited from each parent. His muscle cells synthesized two forms of β-enolase, each carrying a different mutation. These mutations changed glycine at position 374 to glutamate (G374E) and glycine at position 156 to aspartate (G156D).
Carnitine deficiency has been extensively studied, although most commonly as a secondary finding to other metabolic conditions. The first case of SPCD was reported in the 1980s, in a child with fasting hypoketotic hypoglycemia that resolved after treatment with carnitine supplementation. Later cases were reported with cardiomyopathy and muscle weakness. Newborn screening expanded the potential phenotypes associated with SPCD, to include otherwise asymptomatic adults.
Methylmalonyl-CoA mutase is a mitochondrial homodimer apoenzyme (EC. 5. 4.99.2) that focuses on the catalysis of methylmalonyl CoA to succinyl CoA. The enzyme is bound to adenosylcobalamin, a hormonal derivative of vitamin B12 in order to function. Methylmalonyl-CoA mutase deficiency is caused by genetic defect in the MUT gene responsible for encoding the enzyme. Deficiency in this enzyme accounts for 60% of the cases of methylmalonic acidemia.