Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The overall frequency of glycogen-storage disease is approximately 1 case per 20,000–25,000 people. Glycogen-storage disease type 0 is a rare form, representing less than 1% of all cases. The identification of asymptomatic and oligosymptomatic siblings in several glycogen-storage disease type 0 families has suggested that glycogen-storage disease type 0 is underdiagnosed.
No sexual predilection is observed because the deficiency of glycogen synthetase activity is inherited as an autosomal recessive trait.
Inborn errors of carbohydrate metabolism are inborn error of metabolism that affect the catabolism and anabolism of carbohydrates.
An example is lactose intolerance.
Carbohydrates account for a major portion of the human diet. These carbohydrates are composed of three principal monosaccharides: glucose, fructose and galactose; in addition glycogen is the storage form of carbohydrates in humans. The failure to effectively use these molecules accounts for the majority of the inborn errors of human carbohydrates metabolism.
Developmental delay is a potential secondary effect of chronic or recurrent hypoglycemia, but is at least theoretically preventable. Normal neuronal and muscle cells do not express glucose-6-phosphatase, so GSD I causes no other neuromuscular effects.
In a study in British Columbia, the overall incidence of the inborn errors of metabolism were estimated to be 40 per 100,000 live births or 1 in 1,400 births, overall representing more than approximately 15% of single gene disorders in the population.
Neutropenia is a manifestation of this disease. Granulocyte colony-stimulating factor (G-CSF, e.g. filgrastim) therapy can reduce the risk of infection.
Overall, according to a study in British Columbia, approximately 2.3 children per 100,000 births (1 in 43,000) have some form of glycogen storage disease. In the United States, they are estimated to occur in 1 per 20,000–25,000 births. Dutch incidence rate is estimated to be 1 per 40,000 births.
In dairy cattle, ketosis is a common ailment that usually occurs during the first weeks after giving birth to a calf. Ketosis is in these cases sometimes referred to as "acetonemia". A study from 2011 revealed that whether ketosis is developed or not depends on the lipids a cow uses to create butterfat. Animals prone to ketosis mobilize fatty acids from adipose tissue, while robust animals create fatty acids from blood phosphatidylcholine (lecithin). Healthy animals can be recognized by high levels of milk glycerophosphocholine and low levels of milk phosphocholine. Point of care diagnostic tests are available and are reasonably useful.
In sheep, ketosis, evidenced by hyperketonemia with beta-hydroxybutyrate in blood over 0.7 mmol/L, occurs in pregnancy toxemia. This may develop in late pregnancy in ewes bearing multiple fetuses, and is associated with the considerable glucose demands of the conceptuses. In ruminants, because most glucose in the digestive tract is metabolized by rumen organisms, glucose must be supplied by gluconeogenesis, for which propionate (produced by rumen bacteria and absorbed across the rumen wall) is normally the principal substrate in sheep, with other gluconeogenic substrates increasing in importance when glucose demand is high or propionate is limited. Pregnancy toxemia is most likely to occur in late pregnancy because most fetal growth (and hence most glucose demand) occurs in the final weeks of gestation; it may be triggered by insufficient feed energy intake (anorexia due to weather conditions, stress or other causes), necessitating reliance on hydrolysis of stored triglyceride, with the glycerol moiety being used in gluconeogenesis and the fatty acid moieties being subject to oxidation, producing ketone bodies. Among ewes with pregnancy toxemia, beta-hydroxybutyrate in blood tends to be higher in those that die than in survivors. Prompt recovery may occur with natural parturition, Caesarean section or induced abortion. Prevention (through appropriate feeding and other management) is more effective than treatment of advanced stages of ovine ketosis.
The term fatty acid oxidation disorder (FAOD) is sometimes used, especially when there is an emphasis on the oxidation of the fatty acid.
In addition to the fetal complications, they can also cause complications for the mother during pregnancy.
Examples include:
- trifunctional protein deficiency
- MCADD, LCHADD, and VLCADD
To treat people with a deficiency of this enzyme, they must avoid needing gluconeogenesis to make glucose. This can be accomplished by not fasting for long periods, and eating high-carbohydrate food. They should avoid fructose containing foods (as well as sucrose which breaks down to fructose).
As with all single-gene metabolic disorders, there is always hope for genetic therapy, inserting a healthy copy of the gene into existing liver cells.
Lactose is a disaccharide sugar composed of galactose and glucose that is found in milk. Lactose can not be absorbed by the intestine and needs to be split in the small intestine into galactose and glucose by the enzyme called lactase; unabsorbed lactose can cause abdominal pain, bloating, diarrhea, gas, and nausea.
In most mammals, production of lactase diminishes after infants are weaned from maternal milk. However, 5% to 90% of the human population possess an advantageous autosomal mutation in which lactase production persists after infancy. The geographic distribution of lactase persistence is concordant with areas of high milk intake. Lactase non-persistence is common in tropical and subtropical countries. Individuals with lactase non-persistency may experience nausea, bloating and diarrhea after ingesting dairy.
Incomplete list of various fatty-acid metabolism disorders.
- Carnitine Transport Defect
- Carnitine-Acylcarnitine Translocase (CACT) Deficiency
- Carnitine Palmitoyl Transferase I & II (CPT I & II) Deficiency
- 2,4 Dienoyl-CoA Reductase Deficiency
- Electron Transfer Flavoprotein (ETF) Dehydrogenase Deficiency (GAII & MADD)
- 3-Hydroxy-3 Methylglutaryl-CoA Lyase (HMG) Deficiency
- Very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCAD deficiency)
- Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency (LCHAD deficiency)
- Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCAD deficiency)
- Short-chain acyl-coenzyme A dehydrogenase deficiency (SCAD deficiency)
- 3-hydroxyacyl-coenzyme A dehydrogenase deficiency (M/SCHAD deficiency)
Some clinicians regard eliminating carbohydrates as unhealthy and dangerous. However, it is not necessary to eliminate carbohydrates from the diet completely to achieve ketosis. Other clinicians regard ketosis as a safe biochemical process that occurs during the fat-burning state. Ketosis, which is accompanied by gluconeogenesis (the creation of glucose de novo from pyruvate), is the specific state that concerns some clinicians. However, it is unlikely for a normally functioning person to reach life-threatening levels of ketosis, defined as serum beta-hydroxybutyrate (B-OHB) levels above 15 millimolar (mM) compared to ketogenic diets among non diabetics, which "rarely run serum B-OHB levels above 3 mM." This is avoided with proper basal secretion of pancreatic insulin. People who are unable to secrete basal insulin, such as type 1 diabetics and long-term type II diabetics, are liable to enter an unsafe level of ketosis, eventually resulting in a coma that requires emergency medical treatment. The anti-ketosis conclusions have been challenged by a number of doctors and advocates of low-carbohydrate diets, who dispute assertions that the body has a preference for glucose and that there are dangers associated with ketosis.
Glycogen storage disease type III is an autosomal recessive metabolic disorder and inborn error of metabolism (specifically of carbohydrates) characterized by a deficiency in glycogen debranching enzymes. It is also known as Cori's disease in honor of the 1947 Nobel laureates Carl Cori and Gerty Cori. Other names include Forbes disease in honor of clinician Gilbert Burnett Forbes (1915–2003), an American Physician who further described the features of the disorder, or limit dextrinosis, due to the limit dextrin-like structures in cytosol. Limit dextrin is the remaining polymer produced after hydrolysis of glycogen. Without glycogen debranching enzymes to further convert these branched glycogen polymers to glucose, limit dextrinosis abnormally accumulates in the cytoplasm.
Glycogen is a molecule the body uses to store carbohydrate energy. Symptoms of GSD-III are caused by a deficiency of the enzyme amylo-1,6 glucosidase, or debrancher enzyme. This causes excess amounts of an abnormal glycogen to be deposited in the liver, muscles and, in some cases, the heart.
Without effective gluconeogenesis (GNG), hypoglycaemia will set in after about 12 hours of fasting. This is the time when liver glycogen stores have been exhausted, and the body has to rely on GNG. When given a dose of glucagon (which would normally increase blood glucose) nothing will happen, as stores are depleted and GNG doesn't work. (In fact, the patient would already have high glucagon levels.)
There is no problem with the metabolism of glucose or galactose, but fructose and glycerol cannot be used by the liver to maintain blood glucose levels. If fructose or glycerol are given, there will be a buildup of phosphorylated three-carbon sugars. This leads to phosphate depletion within the cells, and also in the blood. Without phosphate, ATP cannot be made, and many cell processes cannot occur.
High levels of glucagon will tend to release fatty acids from adipose tissue, and this will combine with glycerol that cannot be used in the liver, to make triacylglycerides causing a fatty liver.
As three carbon molecules cannot be used to make glucose, they will instead be made into pyruvate and lactate. These acids cause a drop in the pH of the blood (a metabolic acidosis). Acetyl CoA (acetyl co-enzyme A) will also build up, leading to the creation of ketone bodies.
PSSM is most prevalent in American Quarter Horses and their related breeds (Paint horse, Appaloosa, Appendix Quarter Horse), Draft horse breeds (especially Belgian Draft and Percherons), and Warmblood breeds. The Belgian Draft been shown to have a 36% prevalence of PSSM. Other breeds that have been diagnosed with PSSM include the Arabian, Lipizzaner, Morgan, Mustang, Peruvian Paso, Rocky Mountain Horse, Standardbred, Tennessee Walking Horse, Thoroughbred, and National Show Horse. It has been suggested that the GSY1 mutation provided some benefit to hard working animals with poor-quality diets, and is now damaging members of those "thrifty" breeds that are managed with moderate to low levels of work and diets high in non-structural carbohydrates.
PSSM Type 1 (homozygous or heterozygous for the GSY1 mutation) is more common in Quarter Horses and their related breeds, and draft breeds, while PSSM Type 2 (negative for the GSY1 mutation) is more commonly seen in other breeds, including warmbloods. There is no sex predilection to the disease.
Histidinemia is a rare autosomal recessive disorder. However, histidinemia is considered the most prevalent inborn error of metabolism with a reported incidence of 1:8600 (Quebec); 1:180,000 (New York) and 1:9600 (Japan); and an average of 1:12,000 observed in the neonatal screening of over 20 million newborns.
If known causes for ketotic hypoglycemia such as the ketotic Glycogen Storage Disease subtypes can be ruled out, it has been proposed that this condition simply represents the extreme edge of the normal population in terms of tolerance for fasting and ability to maintain normoglycemia. It is also possible that some children given this diagnosis have still-undiscovered defects of metabolism which will eventually be identified.
Treatment for glycogen storage disease type III may involve a high-protein diet, in order to facilitate gluconeogenesis. Additionally the individual may need:
- IV glucose (if oral route is inadvisable)
- Nutritional specialist
- Vitamin D (for osteoporosis/secondary complication)
- Hepatic transplant (if complication occurs)
Metabolic myopathies are myopathies that result from defects in biochemical metabolism that primarily affect muscle. They include:
- Glycogen storage diseases
- Lipid storage disorder
- Phosphocreatine stores disorder
Some affected animals may remain subclinical, others may have mild signs that do not impede athletic performance, while some horses will have clinical signs that prevent any forced exercise. Rarely, horses will die from acute episodes of rhabdomyolysis. The reason for such variability of phenotype is not fully understood. Temperament, gender, and body type have no effect on degree of clinical signs. However, environmental factors such as diet and exercise, whether the horse is heterozygous or homozygous for the mutated GSY1 allele, and the presence of modifying genes all play a role. Additionally, some affected horses may have PSSM Type 2, which will produce different cellular changes and subsequently different phenotypic effects.
One such modifying genes is RYR1, which is responsible for calcium regulation in muscle cells. RYR1 mutation causes malignant hyperthermia, a rare but potentially fatal disorder usually associated with anesthesia. While RYR1 mutation is rare in horses, including the general Quarter Horse population, it is much more common in Quarter Horses with GSY1 mutation. Horses with both mutations are more likely to have a severe PSSM phenotype, including higher levels of blood creatine kinase (CK), more severe exercise intolerance, more severe episodes of rhabdomyolysis (more frequent muscle fasciculations, more frequent episodes that are not associated with exercise, acute death), and poor response to PSSM treatment.
Additionally, defects in both GSY1 and the SCNA4 gene, responsible for Hyperkalemic Periodic Paralysis (HYPP) in Quarter Horses and related breeds, has been found in 14% of Halter horses. A combination of both of these genes can cause severe rhabdomyolysis should the horse become recumbent due to an HYPP attack.
A 1994 study of the entire population of New South Wales (Australia) found 20 patients. Of these, 5 (25%) had died at or before 30 months of age. Of the survivors, 1 (5%) was severely disabled and the remainder had either suffered mild disability or were making normal progress in school. A 2006 Dutch study followed 155 cases and found that 27 individuals (17%) had died at an early age. Of the survivors, 24 (19%) suffered from some degree of disability, of which most were mild. All the 18 patients diagnosed neonatally were alive at the time of the follow-up.
Traditionally the inherited metabolic diseases were classified as disorders of carbohydrate metabolism, amino acid metabolism, organic acid metabolism, or lysosomal storage diseases. In recent decades, hundreds of new inherited disorders of metabolism have been discovered and the categories have proliferated. Following are some of the major classes of congenital metabolic diseases, with prominent examples of each class. Many others do not fall into these categories.
Glycogen storage disease type VI (GSD VI) is a type of glycogen storage disease caused by a deficiency in liver glycogen phosphorylase or other components of the associated phosphorylase cascade system. It is also known as "Hers' disease", after Henri G. Hers, who characterized it in 1959. The scope of GSD VI now also includes glycogen storage disease type VIII, IX (caused by phosphorylase b kinase deficiency) and X (deficiency protein kinase A).
The incidence of GSD VI is approximately 1 case per 65,000–85,000 births, representing approximately 30% all cases of glycogen storage disease. Approximately 75% of these GSD VI cases result from the X-linked recessive forms of phosphorylase kinase deficiency, all other forms are autosomal recessive.
In horses: it has been reported in American Quarter Horses and related breeds.
In cats: the disease has been reported in the Norwegian Forest Cat, where it causes skeletal muscle, heart, and CNS degeneration in animals greater than 5 months old. It has not been associated with cirrhosis or liver failure.