Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Although reliable and comprehensive incidence statistics are nonexistent, LCLC-RP is a rare tumor, with only a few hundred cases described in the scientific literature to date. LCLC's made up about 10% of lung cancers in most historical series, equating to approximately 22,000 cases per year in the U.S. Of these LCLC cases, it is estimated that about 1% will eventually develop the rhabdoid phenotype during tumor evolution and progression. In one large series of 902 surgically resected lung cancers, only 3 cases (0.3%) were diagnosed as LCLC-RP. In another highly selected series of large-cell lung carcinoma cases, only 4 of 45 tumors (9%) were diagnosed as the rhabdoid phenotype using the 10% criterion, but another 10 (22%) had at least some rhabdoid cell formation. It appears likely, therefore, that LCLC-RP probably comprises between 0.1% and 1.0% of all lung malignancies.
Similar to nearly all variants of lung carcinoma, large cell lung carcinoma with rhabdoid phenotype appears to be highly related to tobacco smoking. It also appears to be significantly more common in males than in females.
Giant-cell lung cancers have long been considered to be exceptionally aggressive malignancies that grow very rapidly and have a very poor prognosis.
Many small series have suggested that the prognosis of lung tumors with giant cells is worse than that of most other forms of non-small-cell lung cancer (NSCLC), including squamous cell carcinoma, and spindle cell carcinoma.
The overall five-year survival rate in GCCL varies between studies but is generally considered to be very low. The (US) Armed Forces Institute of Pathology has reported a figure of 10%, and in a study examining over 150,000 lung cancer cases, a figure of 11.8% was given. However, in the latter report the 11.8% figure was based on data that included spindle cell carcinoma, a variant which is generally considered to have a less dismal prognosis than GCCL. Therefore, the likely survival of "pure" GCCL is probably lower than the stated figure.
In the large 1995 database review by Travis and colleagues, giant-cell carcinoma has the third-worst prognosis among 18 histological forms of lung cancer. (Only small-cell carcinoma and large-cell carcinoma had shorter average survival.)
Most GCCL have already grown and invaded locally and/or regionally, and/or have already metastasized distantly, and are inoperable, at the time of diagnosis.
The true incidence, prevalence, and mortality of GCCL is generally unknown due to a lack of accurate cancer data on a national level. It is known to be a very rare tumor variant in all populations examined, however. In an American study of a database of over 60,000 lung cancers, GCCL comprised between 0.3% and 0.4% of primary pulmonary malignancies, with an age-adjusted incidence rate of about 3 new cases per million persons per year. With approximately 220,000 total lung cancers diagnosed in the US each year, the proportion suggests that approximately 660 and 880 new cases are diagnosed in Americans annually.
However, in a more recent series of 4,212 consecutive lung cancer cases, only one (0.024%) lesion was determined to be a "pure" giant-cell carcinoma after complete sectioning of all available tumor tissue. While some evidence suggests GCCL may have been considerably more common several decades ago, with one series identifying 3.4% of all lung carcinomas as giant-cell malignancies, it is possible that this number reflect
Most published case series and reports on giant cell-containing lung cancers show that they are diagnosed much more frequently in men than they are in women, with some studies showing extremely high male-to-female ratios (12:1 or more). In a study of over 150,000 lung cancer victims in the US, however, the gender ratio was just over 2:1, with women actually having a higher relative proportion of giant-cell cancers (0.4%) than men (0.3%).
Giant-cell carcinomas have been reported to be diagnosed in a significantly younger population than all non-small-cell carcinomas considered as a group. Like nearly all lung carcinomas, however, GCCs are exceedingly rare in very young people: in the US SEER program, only 2 cases were recorded to occur in persons younger than 30 years of age between 1983 and 1987. The average age at diagnosis of these tumors has been estimated at 60 years.
The vast majority of individuals with GCCL are heavy smokers.
Although the definitions of "central" and "peripheral" can vary between studies, GCCL are consistently diagnosed much more frequently in the lung periphery. In a review of literature compiled by Kallenburg and co-workers, less than 30% of GCCLs arose in the hilum or other parts of the "central" pulmonary tree.
A significant predilection for genesis of GCCL in the upper lobes of victims has also been postulated.
Reliable comprehensive incidence statistics for c-SCLC are unavailable. In the literature, the frequency with which the c-SCLC variant is diagnosed largely depends on the size of tumor samples, tending to be higher in series where large surgical resection specimens are examined, and lower when diagnoses are based on small cytology and/or biopsy samples. Tatematsu "et al." reported 15 cases of c-SCLC (12%) in their series of 122 consecutive SCLC patients, but only 20 resection specimens were examined. In contrast, Nicholson "et al." found 28 c-SCLC (28%) in a series of 100 consecutive resected SCLC cases. It appears likely, then, that the c-SCLC variant comprises 25% to 30% of all SCLC cases.
As the incidence of SCLC has declined somewhat in the U.S. in recent decades, it is likely that c-SCLC has also decreased in incidence. Nevertheless, small cell carcinomas (including the c-SCLC variant) still comprise 15–20% of all lung cancers, with c-SCLC probably accounting for 4–6%. With 220,000 cases of newly diagnosed lung cancer in the U.S. each year, it can be estimated that between 8,800 and 13,200 of these are c-SCLC.
In a study of 408 consecutive patients with SCLC, Quoix and colleagues found that presentation as a solitary pulmonary nodule (SPN) is particularly indicative of a c-SCLC — about 2/3 of their SPN's were pathologically confirmed to be c-SCLC's containing a large cell carcinoma component.
15% of lung cancers in the US are of this type. Small cell lung cancer occurs almost exclusively in smokers; most commonly in heavy smokers and rarely in non-smokers.
LCLC-RP are considered to be especially aggressive tumors with a dismal prognosis. Many published cases have shown short survival times after diagnosis. Some studies suggest that, as the proportion of rhabdoid cells in the tumor increases, the prognosis tends to worsen, although this is most pronounced when the proportion of rhabdoid cells exceeds 5%. With regard to "parent" neoplasms other than LCLC, adenocarcinomas with rhabdoid features have been reported to have worse prognoses than adenocarcinomas without rhabdoid features, although an "adenocarcinoma with rhabdoid phenotype" tumor variant has not been specifically recognized as a distinct entity under the WHO-2004 classification system.
Interestingly, there are case reports of rhabdoid carcinomas recurring after unusually long periods, which is unusual for a fast-growing, aggressive tumor type. One report described a very early stage patient whose tumor recurred 6 years after initial treatment. Although rapidly progressive, fulminant courses seem to be the rule in this entity, long-term survival has also been noted, even post-metastectomy in late stage, distant metastatic disease.
Current consensus is that the long-term prognosis of c-SCLC patients is determined by the SCLC component of their tumor, given that "pure" SCLC seems to have the worst long-term prognosis of all forms of lung cancer. Although data on c-SCLC is very sparse, some studies suggest that survival rates in c-SCLC may be even worse than that of pure SCLC, likely due to the lower rate of complete response to chemoradiation in c-SCLC, although not all studies have shown a significant difference in survival.
Untreated "pure" SCLC patients have a median survival time of between 4 weeks and 4 months, depending on stage and performance status at the time of diagnosis.
Given proper multimodality treatment, SCLC patients with limited disease have median survival rates of between 16 and 24 months, and about 20% will be cured. In patients with extensive disease SCLC, although 60% to 70% will have good-to-complete responses to treatment, very few will be cured, with a median survival of only 6 to 10 months.
Some evidence suggests that c-SCLC patients who continue to smoke may have much worse outcomes after treatment than those who quit.
In most series, LCLC's comprise between 5% and 10% of all lung cancers.
According to the Nurses' Health Study, the risk of large cell lung carcinoma increases with a previous history of tobacco smoking, with a previous smoking duration of 30 to 40 years giving a relative risk of approximately 2.3 compared to never-smokers, and a duration of more than 40 years giving a relative risk of approximately 3.6.
Another study concluded that cigarette smoking is the predominant cause of large cell lung cancer. It estimated that the odds ratio associated with smoking two or more packs/day for current smokers is 37.0 in men and 72.9 in women.
EMECL is extremely rare, with only a handful of cases reported in the literature.
In the lung, two salivary gland-like carcinomas, mucoepidermoid carcinoma and adenoid cystic carcinoma, while extremely uncommon, occur far more often than does EMECL.
The prognosis of EMECL is relatively good, and considerably better than most other forms of NSCLC. The skull and dura are possible sites for metastasis from pulmonary EMC. The MIB-1 index is a predictive marker of malignant potential.
This type of cancer occurs most often in Caucasians between 60 and 80 years of age, and its rate of incidence is about twice as high in males as in females. There are roughly 1,500 new cases of MCC diagnosed each year in the United States, as compared to around 60,000 new cases of melanoma and over 1 million new cases of nonmelanoma skin cancer. MCC is sometimes mistaken for other histological types of cancer, including basal cell carcinoma, squamous cell carcinoma, malignant melanoma, lymphoma, and small cell carcinoma, or as a benign cyst. Researchers believe that exposure to sunlight or ultraviolet light (such as in a tanning bed) may increase the risk of developing this disease. Similar to melanoma, the incidence of MCC in the US is increasing rapidly.
Immunosuppression can profoundly increase the odds of developing Merkel-cell carcinoma. Merkel-cell carcinoma occurs 30 times more often in people with chronic lymphocytic leukemia and 13.4 times more often in people with advanced HIV as compared to the general population; solid organ transplant recipients have a 10-fold increased risk compared to the general population.
All in all, small-cell carcinoma is very responsive to chemotherapy and radiotherapy, and in particular, regimens based on platinum-containing agents. However, most people with the disease relapse, and median survival remains low.
In "limited-stage" disease, median survival with treatment is 14–20 months, and about 20% of patients with limited-stage small-cell lung carcinoma live 5 years or longer. Because of its predisposition for early metastasis, the prognosis of SCLC is poor, with only 10% to 15% of patients surviving 3 years.
The prognosis is far more grim in "extensive-stage" small-cell lung carcinoma; with treatment, median survival is 8–13 months; only 1–5% of patients with extensive-stage small-cell lung carcinoma treated with chemotherapy live 5 years or longer.
LCC is, in effect, a "diagnosis of exclusion", in that the tumor cells lack light microscopic characteristics that would classify the neoplasm as a small-cell carcinoma, squamous-cell carcinoma, adenocarcinoma, or other more specific histologic type of lung cancer.
LCC is differentiated from small-cell lung carcinoma (SCLC) primarily by the larger size of the anaplastic cells, a higher cytoplasmic-to-nuclear size ratio, and a lack of "salt-and-pepper" chromatin.
While cancer is generally considered a disease of old age, children can also develop cancer. In contrast to adults, carcinomas are exceptionally rare in children..
The two biggest risk factors for ovarian carcinoma are age and family history.
Lung cancers have been historically classified using two major paradigms. Histological classification systems group lung cancers according to the appearance of the cells and surrounding tissues when they are viewed under a microscope. Clinical classification systems divide lung cancers into groups based on medical criteria, particularly their response to different treatment regimens.
Before the mid-1900s, lung cancer was considered to be a single disease entity, with all forms treated similarly. In the 1960s, small cell lung carcinoma (SCLC) was recognized as a unique form of lung cancer, based both on its appearance (histology) and its clinical properties, including much greater susceptibility to chemotherapy and radiation, more rapid growth rate, and its propensity to metastasize widely early on in its course. Since then, most oncologists have based patient treatment decisions on a dichotomous division of lung cancers into SCLC and non-small cell lung carcinomas (NSCLC), with the former being treated primarily with chemoradiation, and the latter with surgery.
An explosion of new knowledge, accumulated mainly over the last 20 years, has proved that lung cancers should be considered an extremely heterogeneous family of neoplasms with widely varying genetic, biological, and clinical characteristics, particularly their responsiveness to the large number of newer treatment protocols. Well over 50 different histological variants are now recognized under the 2004 revision of the World Health Organization ("WHO-2004") typing system, currently the most widely used lung cancer classification scheme. Recent studies have shown beyond doubt that the old clinical classification paradigm of "SCLC vs. NSCLC" is now obsolete, and that correct "subclassification" of lung cancer cases is necessary to assure that lung cancer patients receive optimum management.
Approximately 98% of lung cancers are carcinoma, which are tumors composed of cells with epithelial characteristics. LCLC's are one of 8 major groups of lung carcinomas recognized in WHO-2004:
- Squamous cell carcinoma
- Small cell carcinoma
- Adenocarcinoma
- Large cell carcinoma
- Adenosquamous carcinoma
- Sarcomatoid carcinoma
- Carcinoid tumor
- Salivary gland-like carcinoma
Genetic changes are very high in SCLC and LCNEC, but usually low for TC, intermediate for AC.
Adenosquamous lung carcinoma (AdSqLC) is a biphasic malignant tumor arising from lung tissue that is composed of at least 10% by volume each of squamous cell carcinoma (SqCC) and adenocarcinoma (AdC) cells.
Lung cancer is a large and exceptionally heterogeneous family of malignancies. Over 50 different histological variants are explicitly recognized within the 2004 revision of the World Health Organization (WHO) typing system ("WHO-2004"), currently the most widely used lung cancer classification scheme. Many of these entities are rare, recently described, and poorly understood. However, since different forms of malignant tumors generally exhibit diverse genetic, biological, and clinical properties — including response to treatment — accurate classification of lung cancer cases are critical to assuring that patients with lung cancer receive optimum management.
Under WHO-2004, lung carcinomas are divided into 8 major taxa:
- Squamous cell carcinoma
- Small cell carcinoma
- Adenocarcinoma
- Large cell carcinoma
- Adenosquamous carcinoma
- Sarcomatoid carcinoma
- Carcinoid tumor
- Salivary gland-like carcinoma
Salivary gland–like carcinomas of the lung generally refers a class of rare cancers that arise from the uncontrolled cell division (mitosis) of mutated cancer stem cells in lung tissue. They take their name partly from the appearance of their abnormal cells, whose structure and features closely resemble those of cancers that form in the major salivary glands (parotid glands, submandibular glands and sublingual glands) of the head and neck. Carcinoma is a term for malignant neoplasms derived from cells of epithelial lineage, and/or that exhibit cytological or tissue architectural features characteristically found in epithelial cells.
This class of primary lung cancers contains several histological variants, including mucoepidermoid carcinoma of the lung, adenoid cystic carcinoma of the lung, epithelial-myoepithelial carcinoma of the lung, and other (even more rare) variants. .
A Clear-cell carcinoma is a carcinoma (i.e. not a sarcoma) showing clear cells.
"A rare type of tumor, usually of the female genital tract, in which the insides of the cells look clear when viewed under a microscope. Also called clear cell adenocarcinoma and mesonephroma."
Examples :
- Clear cell renal cell carcinoma ~ clear cell kidney cancer
- Uterine clear-cell carcinoma ~ clear cell endometrial cancer
- Clear-cell ovarian carcinoma
Acinic cell carcinoma appears in all age groups, but presents at a younger median age (approx. 52 years) than most other salivary gland cancers. Occurrences in children are quite common.
A newly discovered virus called Merkel cell polyomavirus (MCV) likely contributes to the development of the majority of MCC. Approximately 80% of MCC have this virus integrated in a monoclonal pattern, indicating that the infection was present in a precursor cell before it became cancerous. At least 20% of MCC tumors are not infected with MCV, suggesting that MCC may have other causes as well.
Polyomaviruses have been known to be oncogenic (cancer-causing) viruses in animals since the 1950s, but MCV is the first polyomavirus strongly suspected to cause tumors in humans. Like other tumor viruses, most people who are infected with MCV probably do not develop MCC. It is currently unknown what other steps or co-factors are required for MCC-type cancers to develop. MCC can also occur together with other sun exposure-related skin cancers that are not infected with MCV (i.e. basal cell carcinoma, squamous cell carcinoma, melanoma). Intriguingly, most MCV viruses obtained so far from tumors have specific mutations that render the virus uninfectious. It is unknown whether these particular mutations result from sun exposure. MCC also occurs more frequently than would otherwise be expected among immunosuppressed patients, such as transplant patients, AIDS patients, and the elderly persons, suggesting that the initiation and progression of the disease is modulated by the immune system.
While infection with MCV is common in humans, MCC patients whose tumors contain MCV have higher antibody levels against the virus than similarly infected healthy adults. A recent study of a large patient registry from Finland suggests that individuals with MCV-positive MCC's have better prognoses than do MCC patients without MCV infection. While MCV-positive MCC may be a less aggressive form of the disease, the results of the aforementioned study may instead be due to significant differences in other confounding factors, including tumor stage at the time of diagnosis, the age of the patient, or the location of the tumor rather than any intrinsic difference in disease aggressiveness or response to therapy.
Histological variants of lung cancer classified as sarcomatoid carcinoma include pleomorphic carcinoma, giant cell carcinoma, spindle cell carcinoma, carcinosarcoma, and pulmonary blastoma.
Prognosis is good for acinic cell carcinoma of the parotid gland, with five-year survival rates approaching is 90%, and 20-year survival exceeding 50%. Patients with acinic cell carcinomas with high grade transformation (sometimes also called dedifferentiation) have significantly worse survival.
The prognosis of an acinic cell carcinoma originating in the lung is much more guarded than cases of this rare histotype occurring in most other organs, but is still considerably better than for other types of lung cancer.
Pulmonary neuroendocrine tumors are neuroendocrine tumors localized to the lung: bronchus or pulmonary parenchyma.
Pulmonary neuroendocrine tumors include a spectrum of tumors from the low-grade typical pulmonary carcinoid tumor and intermediate-grade atypical pulmonary carcinoid tumor to the high-grade pulmonary large cell neuroendocrine carcinoma (LCNEC) and pulmonary small cell carcinoma (SCLC), with significant clinical, epidemiologic and genetic differences.