Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Roberts syndrome is an extremely rare condition that only affects about 150 reported individuals. Although there have been only about 150 reported cases, the affected group is quite diverse and spread worldwide. Parental consanguinity (parents are closely related) is common with this genetic disorder. The frequency of Roberts syndrome carriers is unknown.
Williams syndrome is a microdeletion syndrome caused by the spontaneous deletion of genetic material from the region q11.23 of one member of the pair of chromosome 7, so that the person is hemizygous for those genes. The deleted region includes more than 25 genes, and researchers believe that being hemizygous for these genes probably contributes to the characteristic features of this syndrome. "CLIP2", "ELN", "GTF2I", "GTF2IRD1", and "LIMK1" are among the genes that are typically deleted from one chromosome in people with Williams syndrome. Researchers have found this hemizygosity for the "ELN" gene, which codes for the protein elastin, is associated with the connective-tissue abnormalities and cardiovascular disease (specifically supravalvular aortic stenosis and supravalvular pulmonary stenosis) found in many people with this syndrome. The insufficient supply of elastin may also be the cause of full cheeks, harsh or hoarse voice, hernias and bladder diverticula often found in those with Williams syndrome. Studies suggest that hemizygosity in "LIMK1", "GTF2I", "GTF2IRD1", and perhaps other genes may help explain the characteristic difficulties with visual–spatial tasks. Additionally, there is evidence that the hemizygosity in several of these genes, including "CLIP2", may contribute to the unique behavioral characteristics, learning disabilities, and other cognitive difficulties seen in Williams syndrome.
The prognosis varies widely from case to case, depending on the severity of the symptoms. However, almost all people reported with Aicardi syndrome to date have experienced developmental delay of a significant degree, typically resulting in mild to moderate to profound intellectual disability. The age range of the individuals reported with Aicardi syndrome is from birth to the mid 40s.
There is no cure for this syndrome.
Williams syndrome (WS) is a developmental disorder that affects many parts of the body. Facial features frequently include a broad forehead, short nose, and full cheeks, an appearance that has been described as "elfin". Mild to moderate intellectual disability with particular problems with visual spatial tasks such as drawing and fewer problems with language are typical. Those affected often have an outgoing personality and interact readily with strangers. Problems with teeth, heart problems, especially supravalvular aortic stenosis, and periods of high blood calcium are common.
Williams syndrome is caused by a genetic abnormality, specifically a deletion of about 27 genes from the long arm of one of the two chromosome 7s. Typically this occurs as a random event during the formation of the egg or sperm from which a person develops. In a small number of cases it is inherited from an affected parent in an autosomal dominant manner. The different characteristic features have been linked to the loss of specific genes. The diagnosis is typically suspected based on symptoms and confirmed by genetic testing.
Treatment includes special education programs and various types of therapy. Surgery may be done to correct heart problems. Dietary changes or medications may be required for high blood calcium. The syndrome was first described in 1961 by New Zealander John C. P. Williams. Williams syndrome affects between 1 in 7,500 to 1 in 20,000 people at birth. Life expectancy is less than that of the general population mostly due to the increased rates of heart disease.
Respiratory complications are often cause of death in early infancy.
Males with Down syndrome usually do not father children, while females have lower rates of fertility relative to those who are unaffected. Fertility is estimated to be present in 30–50% of females. Menopause typically occurs at an earlier age. The poor fertility in males is thought to be due to problems with sperm development; however, it may also be related to not being sexually active. As of 2006, three instances of males with Down syndrome fathering children and 26 cases of females having children have been reported. Without assisted reproductive technologies, around half of the children of someone with Down syndrome will also have the syndrome.
Marshall–Smith syndrome is not to be confused with:
- Marshall syndrome (aka.Periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA syndrome, see also: Periodic fever syndrome)
- Sotos (like) syndrome
- Weaver-Smith syndrome (WSS)
Between 5 and 15% of children with Down syndrome in Sweden attend regular school. Some graduate from high school; however, most do not. Of those with intellectual disability in the United States who attended high school about 40% graduated. Many learn to read and write and some are able to do paid work. In adulthood about 20% in the United States do paid work in some capacity. In Sweden, however, less than 1% have regular jobs. Many are able to live semi-independently, but they often require help with financial, medical, and legal matters. Those with mosaic Down syndrome usually have better outcomes.
Individuals with Down syndrome have a higher risk of early death than the general population. This is most often from heart problems or infections. Following improved medical care, particularly for heart and gastrointestinal problems, the life expectancy has increased. This increase has been from 12 years in 1912, to 25 years in the 1980s, to 50 to 60 years in the developed world in the 2000s. Currently between 4 and 12% die in the first year of life. The probability of long-term survival is partly determined by the presence of heart problems. In those with congenital heart problems 60% survive to 10 years and 50% survive to 30 years of age. In those without heart problems 85% survive to 10 years and 80% survive to 30 years of age. About 10% live to 70 years of age. The National Down Syndrome Society have developed information regarding the positive aspects of life with Down syndrome.
As the syndrome is due to a chromosomal non-disjunction event, the recurrence risk is not high compared to the general population. There has been no evidence found that indicates non-disjunction occurs more often in a particular family.
At this time, there are no other phenotypes (observable expressions of a gene) that have been discovered for mutations in the ESCO2 gene.
Worldwide prevalence of Aicardi Syndrome is estimated at several thousand, with approximately 900 cases reported in the United States.
More than 80% of children with Patau syndrome die within the first year of life. Children with the mosaic variation are usually affected to a lesser extent. In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively.
West syndrome appears in 1% to 5% of infants with Down syndrome. This form of epilepsy is relatively difficult to treat in children who do not have the chromosomal abnormalities involved in Down syndrome. However, in children with Down syndrome, the syndrome is often far more mild, and the children often react better to medication. The German Down Syndrom InfoCenter noted in 2003 that what was normally a serious epilepsy was in such cases often a relatively benign one.
EEG records for children with Down syndrome are often more symmetrical with fewer unusual findings. Although not all children can become entirely free from attacks with medication, children with Down syndrome are less likely to go on to develop Lennox-Gastaut syndrome or other forms of epilepsy than those without additional hereditary material on the 21st chromosome. The reason why it is easier to treat children with Down syndrome is not known.
If, however, a child with Down syndrome has seizures that are difficult to control, the child should be accessed for autistic spectrum disorder.
Nevo Syndrome is considered to be a rare disorder. Since its first appearance in 1974, only a handful of cases have been reported. Studies have shown showing similarities between Nevo Syndrome with Ehlers-Danlos syndrome as well as Sotos syndrome. There is an astounding overlap of phenotypic manifestations between Nevo Syndrome and the more frequent Sotos syndrome, which are both caused by the NSD1 deletion. Sotos syndrome is an autosomal dominant condition associated with learning disabilities, a distinctive facial appearance, and overgrowth. Studies have shown an overwhelming occurrence (half of those involved in the study) of Nevo syndrome in those individuals of Middle-Eastern descent.
Low-set ears are ears with depressed positioning of the pinna two or more standard deviations below the population average.
It can be associated with conditions such as:
- Down's syndrome
- Turner Syndrome
- Noonan syndrome
- Patau syndrome
- DiGeorge syndrome
- Cri du chat syndrome
- Edwards syndrome
- Fragile X syndrome
It is usually bilateral, but can be unilateral in Goldenhar syndrome.
In the United States, sarcoidosis has a prevalence of approximately 10 cases per 100,000 whites and 36 cases per 100,000 blacks. Heerfordt syndrome is present in 4.1–5.6% of those with sarcoidosis.
It is not possible to make a generalised prognosis for development due to the variability of causes, as mentioned above, the differing types of symptoms and cause. Each case must be considered individually.
The prognosis for children with idiopathic West syndrome are mostly more positive than for those with the cryptogenic or symptomatic forms. Idiopathic cases are less likely to show signs of developmental problems before the attacks begin, the attacks can often be treated more easily and effectively and there is a lower relapse rate. Children with this form of the syndrome are less likely to go on to develop other forms of epilepsy; around two in every five children develop at the same rate as healthy children.
In other cases, however, treatment of West syndrome is relatively difficult and the results of therapy often dissatisfying; for children with symptomatic and cryptogenic West syndrome, the prognosis is generally not positive, especially when they prove resistant to therapy.
Statistically, 5 out of every 100 children with West syndrome do not survive beyond five years of age, in some cases due to the cause of the syndrome, in others for reasons related to their medication. Only less than half of all children can become entirely free from attacks with the help of medication. Statistics show that treatment produces a satisfactory result in around three out of ten cases, with only one in every 25 children's cognitive and motoric development developing more or less normally.
A large proportion (up to 90%) of children suffer severe physical and cognitive impairments, even when treatment for the attacks is successful. This is not usually because of the epileptic fits, but rather because of the causes behind them (cerebral anomalies or their location or degree of severity). Severe, frequent attacks can (further) damage the brain.
Permanent damage often associated with West syndrome in the literature include cognitive disabilities, learning difficulties and behavioural problems, cerebral palsy (up to 5 out of 10 children), psychological disorders and often autism (in around 3 out of 10 children). Once more, the cause of each individual case of West syndrome must be considered when debating cause and effect.
As many as 6 out of 10 children with West syndrome suffer from epilepsy later in life. Sometimes West syndrome turns into a focal or other generalised epilepsy. Around half of all children develop Lennox-Gastaut syndrome.
The incidence of Fraser syndrome is 0.043 per 10,000 live born infants and 1.1 in 10,000 stillbirths, making it a rare syndrome.
In mild cases, individuals with XXXY syndrome may lead a relatively good life. These individuals may face difficulties in communicating with others due to their language-based deficits. These deficits may make forming bonds with others difficult, but fulfilling relationships with others are still achievable. Those with higher scores in adaptive functioning are likely to have higher quality of life because they can be independent.
3C syndrome is very rare, occurring in less than 1 birth per million. Because of consanguinity due to a founder effect, it is much more common in a remote First Nations village in Manitoba, where 1 in 9 people carries the recessive gene.
Many of the congenital malformations found with Malpuech syndrome can be corrected surgically. These include cleft lip and palate, omphalocele, urogenital and craniofacial abnormalities, skeletal deformities such as a caudal appendage or scoliosis, and hernias of the umbillicus. The primary area of concern for these procedures applied to a neonate with congenital disorders including Malpuech syndrome regards the logistics of anesthesia. Methods like tracheal intubation for management of the airway during general anesthesia can be hampered by the even smaller, or maldeveloped mouth of the infant. For regional anesthesia, methods like spinal blocking are more difficult where scoliosis is present. In a 2010 report by Kiernan et al., a four-year-old girl with Malpuech syndrome was being prepared for an unrelated tonsillectomy and adenoidectomy. While undergoing intubation, insertion of a laryngoscope, needed to identify the airway for the placement of the endotracheal tube, was made troublesome by the presence of micrognathia attributed to the syndrome. After replacement with a laryngoscope of adjusted size, intubation proceeded normally. Successful general anesthesia followed.
A rare follow-up of a male with Malpuech syndrome was presented by Priolo et al. (2007). Born at term from an uneventful pregnancy and delivery, the infant underwent a surgical repair of a cleft lip and palate. No problems were reported with the procedure. A heart abnormality, atrial septal defect, was also apparent but required no intervention. At age three years, mental retardation, hyperactivity and obsessive compulsive disorder were diagnosed; hearing impairment was diagnosed at age six, managed with the use of hearing aids. Over the course of the decade that followed, a number of psychiatric evaluations were performed. At age 14, he exhibited a fear of physical contact; at age 15, he experienced a severe psychotic episode, characterized by agitation and a loss of sociosexual inhibition. This array of symptoms were treated pharmocologically (with prescription medications). He maintained a low level of mental deficiency by age 17, with moments of compulsive echolalia.
It can be detected by the naked eye as well as dental or skull X-Ray testing.
The prognosis for patients diagnosed with Timothy syndrome is very poor. Of 17 children analyzed in one study, 10 died at an average age of 2.5 years. Of those that did survive, 3 were diagnosed with autism, one with an autism spectrum disorder, and the last had severe delays in language development. One patient with atypical Timothy syndrome was largely normal with the exception of heart arrhythmia. Likewise, the mother of two Timothy syndrome patients also carried the mutation but lacked any obvious phenotype. In both of these cases, however, the lack of severity of the disorder was due to mosaicism.
Some people may have some mental slowness, but children with this condition often have good social skills. Some males may have problems with fertility.
Malpuech facial clefting syndrome, also called Malpuech syndrome or Gypsy type facial clefting syndrome, is a rare congenital syndrome. It is characterized by facial clefting (any type of cleft in the bones and tissues of the face, including a cleft lip and palate), a appendage (a "human tail"), growth deficiency, intellectual and developmental disability, and abnormalities of the renal system (kidneys) and the male genitalia. Abnormalities of the heart, and other skeletal malformations may also be present. The syndrome was initially described by Guilliaume Malpuech and associates in 1983. It is thought to be genetically related to Juberg-Hayward syndrome. Malpuech syndrome has also been considered as part of a spectrum of congenital genetic disorders associated with similar facial, urogenital and skeletal anomalies. Termed "3MC syndrome", this proposed spectrum includes Malpuech, Michels and Mingarelli-Carnevale (OSA) syndromes. Mutations in the "COLLEC11" and "MASP1" genes are believed to be a cause of these syndromes. The incidence of Malpuech syndrome is unknown. The pattern of inheritance is autosomal recessive, which means a defective (mutated) gene associated with the syndrome is located on an autosome, and the syndrome occurs when two copies of this defective gene are inherited.