Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Rubella infection of children and adults is usually mild, self-limiting and often asymptomatic. The prognosis in children born with CRS is poor.
Rubella occurs worldwide. The virus tends to peak during the spring in countries with temperate climates. Before the vaccine against rubella was introduced in 1969, widespread outbreaks usually occurred every 6–9 years in the United States and 3–5 years in Europe, mostly affecting children in the 5-9 year old age group. Since the introduction of vaccine, occurrences have become rare in those countries with high uptake rates.
Vaccination has interrupted the transmission of rubella in the Americas: no endemic case has been observed since February 2009. Vaccination is still strongly recommended as the virus could be reintroduced from other continents should vaccination rates in the Americas drop.
During the epidemic in the U.S. between 1962–1965, rubella virus infections during pregnancy were estimated to have caused 30,000 stillbirths and 20,000 children to be born impaired or disabled as a result of CRS.
Universal immunisation producing a high level of herd immunity is important in the control of epidemics of rubella.
In the UK, there remains a large population of men susceptible to rubella who have not been vaccinated. Outbreaks of rubella occurred amongst many young men in the UK in 1993 and in 1996 the infection was transmitted to pregnant women, many of whom were immigrants and were susceptible. Outbreaks still arise, usually in developing countries where the vaccine is not as accessible.
In Japan, 15,000 cases of rubella and 43 cases of congenital rubella syndrome were reported to the National Epidemiological Surveillance of Infectious Diseases between October 15, 2012, and March 2, 2014 during the 2012–13 rubella outbreak in Japan. They mainly occurred in men of ages 31 to 51 and young adults aged 24–34.
The majority of people survive measles, though in some cases, complications may occur. Possible consequences of measles virus infection include bronchitis, sensorineural hearing loss, and—in about 1 in 10,000 to 1 in 300,000 cases—panencephalitis, which is usually fatal. Acute measles encephalitis is another serious risk of measles virus infection. It typically occurs two days to one week after the breakout of the measles rash and begins with very high fever, severe headache, convulsions and altered mentation. A person with measles encephalitis may become comatose, and death or brain injury may occur.
Measles antibodies are transferred from mothers who have been vaccinated against measles or who have been previously infected with measles to their children while they are still in the womb. Such antibodies will usually give newborn infants some immunity against measles, but such antibodies are gradually lost over the course of the first six months of life. Infants under one year of age whose maternal anti-measles antibodies have disappeared become susceptible to infection with the measles virus.
In developed countries, it is recommended that children be immunized against measles at 12 months, generally as part of a three-part MMR vaccine (measles, mumps, and rubella). The vaccine is generally not given before this age because such infants respond inadequately to the vaccine due to an immature immune system. A second dose of the vaccine is usually given to children between the ages of four and five, to increase rates of immunity. Vaccination rates have been high enough to make measles relatively uncommon. Adverse reactions to vaccination are rare, with fever and pain at the injection site being the most common. Life-threatening adverse reactions occur in less than one per million vaccinations (<0.0001%).
In developing countries where measles is endemic, WHO doctors recommend two doses of vaccine be given at six and nine months of age. The vaccine should be given whether the child is HIV-infected or not. The vaccine is less effective in HIV-infected infants than in the general population, but early treatment with antiretroviral drugs can increase its effectiveness. Measles vaccination programs are often used to deliver other child health interventions, as well, such as bed nets to protect against malaria, antiparasite medicine and vitamin A supplements, and so contribute to the reduction of child deaths from other causes.
The Advisory Committee on Immunization Practices (ACIP) has long recommended that all adult international travelers who do not have positive evidence of previous measles immunity receive two doses of MMR vaccine before traveling. Despite this, a retrospective study of pre-travel consultations with prospective travelers at CDC-associated travel clinics found that of the 16% of adult travelers who were considered eligible for vaccination, only 47% underwent vaccination during the consultation; of these, patient refusal accounted for nearly half (48%), followed by healthcare provider decisions (28%) and barriers in the health system (24%).
The live attenuated BCG vaccine developed against tuberculosis has been shown to have strong beneficial effects on the ability to combat non-tuberculosis infections.
Several studies have suggested that BCG vaccination may reduce atopy, particularly when given early in life. Furthermore, in multiple observational studies BCG vaccination has been shown to provide beneficial effects on overall mortality. These observations encouraged randomised controlled trials to examine BCG vaccination's beneficial non-specific effects on overall health. Since BCG vaccination is recommended to be given at birth in countries that have a high incidence of tuberculosis it would have been unethical to randomize children into 'BCG' vs. 'no BCG' groups. However, many low-income countries delay BCG vaccination for low-birth-weight (LBW) infants; this offered the opportunity to directly test the effect of BCG on overall mortality.
In the first two randomised controlled trials receipt of BCG+OPV at birth vs. OPV only ('delayed BCG') was associated with strong reductions in neonatal mortality; these effects were seen as early as 3 days after vaccination. BCG protected against sepsis as well as respiratory infections.
Among BCG vaccinated children, those who develop a BCG scar or a positive skin test (TST) are less likely to develop sepsis and exhibit an overall reduction in child mortality of around 50%.
In a recent WHO-commissioned review based on five clinical trials and nine observational studies, it was concluded that "the results indicated a beneficial effect of BCG on overall mortality in the first 6–12 months of life. Relevant follow-up in some of the trials was short, and all of the observational studies were regarded as being at risk of bias, so the confidence in the findings was rated as very low according to the GRADE criteria and "There was a suggestion that BCG vaccination may be more beneficial the earlier it is given". Furthermore, "estimated effects are in the region of a halving of mortality risk" and "any effect of BCG vaccine on all-cause mortality is not likely to be attributable to any great extent to fewer deaths from tuberculosis (i.e. to a specific effect of BCG vaccine against tuberculosis)". Based on the evidence, the WHO's Strategic Group of Experts on Immunization concluded that "the non-specific effects on all-cause mortality warrant further research".
There is no specific vaccine against or treatment for exanthema subitum, and most children with the disease are not seriously ill.
Standard titer measles vaccine is recommended at 9 months of age in low-income countries where measles infection is endemic and often fatal. Many observational studies have shown that measles-vaccinated children have substantially lower mortality than can be explained by the prevention of measles-related deaths. Many of these observational studies were natural experiments, such as studies comparing the mortality before and after the introduction of measles vaccine and other studies where logistical factors rather than maternal choice determined whether a child was vaccinated or not.
These findings were later supported in randomized trials from 2003 to 2009 in Guinea-Bissau. An intervention group of children given standard titer measles vaccine at 4.5 and 9 month of age had a 30% reduction in all-cause mortality compared to the children in the control group, which were only vaccinated against measles at 9 month of age.
In a recent WHO-commissioned review based on four randomized trials and 18 observational studies, it was concluded that "There was consistent evidence of a beneficial effect of measles vaccine, although all observational studies were assessed as being at risk of bias and the GRADE rating was of low confidence. There was an apparent difference between the effect in girls and boys, with girls benefitting more from measles vaccination", and furthermore "estimated effects are in the region of a halving of mortality risk" and "if these effects are real then they are not fully explained by deaths that were established as due to measles". Based on the evidence, the WHO's Strategic Advisory Group of Experts on Immunization concluded that "the non-specific effects on all-cause mortality warrant further research".
Roseola is caused by two human herpesviruses, "human herpesvirus 6" (HHV-6) and "human herpesvirus 7" (HHV-7), which are sometimes referred to collectively as Roseolovirus. There are two variants of HHV-6 (HHV-6a and HHV-6b) and studies in the US, Europe, Dubai and Japan have shown that exanthema subitum is caused by HHV-6b. This form of HHV-6 infects over 90% of infants by age 2.
In 2012, the World Health Organization estimated that vaccination prevents 2.5 million deaths each year. If there is 100% immunization, and 100% efficacy of the vaccines, one out of seven deaths among young children could be prevented, mostly in developing countries, making this an important global health issue. Four diseases were responsible for 98% of vaccine-preventable deaths: measles, "Haemophilus influenzae" serotype b, pertussis, and neonatal tetanus.
The Immunization Surveillance, Assessment and Monitoring program of the WHO monitors and assesses the safety and effectiveness of programs and vaccines at reducing illness and deaths from diseases that could be prevented by vaccines.
Vaccine-preventable deaths are usually caused by a failure to obtain the vaccine in a timely manner. This may be due to financial constraints or to lack of access to the vaccine. A vaccine that is generally recommended may be medically inappropriate for a small number of people due to severe allergies or a damaged immune system. In addition, a vaccine against a given disease may not be recommended for general use in a given country, or may be recommended only to certain populations, such as young children or older adults. Every country makes its own vaccination recommendations, based on the diseases that are common in its area and its healthcare priorities. If a vaccine-preventable disease is uncommon in a country, then residents of that country are unlikely to receive a vaccine against it. For example, residents of Canada and the United States do not routinely receive vaccines against yellow fever, which leaves them vulnerable to infection if travelling to areas where risk of yellow fever is highest (endemic or transitional regions).
Many viral infections of the central nervous system occur in seasonal peaks or as epidemics, whereas others, such as herpes simplex encephalitis, are sporadic. In endemic areas it is mostly a disease of children, but as the disease spreads to new regions, or nonimmune travelers visit endemic regions, nonimmune adults are also affected.
Meningitis is a very common in children. Newborns can develop herpes virus infections through contact with infected secretions in the birth canal. Other viral infections are acquired by breathing air contaminated with virus-containing droplets exhaled by an infected person. Arbovirus infections are acquired from bites by infected insects (called epidemic encephalitis). Viral central nervous system infections in newborns and infants usually begin with fever. The inability of infants to communicate directly makes it difficult to understand their symptoms. Newborns may have no other symptoms and may initially not otherwise appear ill. Infants older than a month or so typically become irritable and fussy and refuse to eat. Vomiting is common. Sometimes the soft spot on top of a newborn's head (fontanelle) bulges, indicating an increase in pressure on the brain. Because irritation of the meninges is worsened by movement, an infant with meningitis may cry more, rather than calm down, when picked up and rocked. Some infants develop a strange, high-pitched cry. Infants with encephalitis often have seizures or other abnormal movements. Infants with severe encephalitis may become lethargic and comatose and then die. To make the diagnosis of meningitis or the diagnosis of encephalitis, doctors do a spinal tap (lumbar puncture) to obtain cerebrospinal fluid (CSF) for laboratory analysis in children.
The WHO lists 25 diseases for which vaccines are available:
1. Measles
2. Rubella
3. Cholera
4. Meningococcal disease
5. Influenza
6. Diphtheria
7. Mumps
8. Tetanus
9. Hepatitis A
10. Pertussis
11. Tuberculosis
12. Hepatitis B
13. Pneumoccocal disease
14. Typhoid fever
15. Hepatitis E
16. Poliomyelitis
17. Tick-borne encephalitis
18. Haemophilus influenzae type b
19. Rabies
20. Varicella and herpes zoster (shingles)
21. Human papilloma-virus
22. Rotavirus gastroenteritis
23. Yellow fever
24. Japanese encephalitis
25. Malaria
26. Dengue fever
Any age may be affected although it is most common in children aged five to fifteen years. By the time adulthood is reached about half the population will have become immune following infection at some time in their past. Outbreaks can arise especially in nursery schools, preschools, and elementary schools. Infection is an occupational risk for school and day-care personnel. There is no vaccine available for human parvovirus B19, though attempts have been made to develop one.
The mortality rate of the virus largely depends on the immune status of the infected dogs. Puppies experience the highest mortality rate, where complications such as pneumonia and encephalitis are more common. In older dogs that develop distemper encephalomyelitis, vestibular disease may present. Around 15% of canine inflammatory central nervous system diseases are a result of CDV.
The prevalence of canine distemper in the community has decreased dramatically due to the availability of vaccinations. However, the disease continues to spread among unvaccinated populations, such as those in animal shelters and pet stores. This provides a great threat to both the rural and urban communities throughout the United States, affecting both shelter and domestic canines. Despite the effectiveness of the vaccination, outbreaks of this disease continue to occur nationally. In April 2011, the Arizona Humane Society released a valley-wide pet health alert throughout Phoenix, Arizona.
Outbreaks of canine distemper continue to occur throughout the United States and elsewhere, and are caused by many factors. These factors include the overpopulation of dogs and the irresponsibility of pet owners. The overpopulation of dogs is a national problem that organizations such as the Humane Society and ASPCA face every day. This problem is even greater within areas such as Arizona, owing to the vast amount of rural land. An unaccountable number of strays that lack vaccinations reside in these areas and are therefore more susceptible to diseases such as canine distemper. These strays act as a host for the virus, spreading it throughout the surrounding area, including urban areas. Puppies and dogs that have not received their shots can then be infected if in a place where many dogs interact, such as a dog park.
Fifth disease is transmitted primarily by respiratory secretions (saliva, mucus, etc.) but can also be spread by contact with infected blood. The incubation period (the time between the initial infection and the onset of symptoms) is usually between 4 and 21 days. Individuals with fifth disease are most infectious before the onset of symptoms. Typically, school children, day-care workers, teachers and parents are most likely to be exposed to the virus. When symptoms are evident, there is little risk of transmission; therefore, symptomatic individuals don't need to be isolated.
Fever and sickness behavior and other signs of infection are often taken to be due to them. However, they are evolved physiological and behavioral responses of the host to clear itself of the infection. Instead of incurring the costs of deploying these evolved responses to infections, the body opts to tolerate an infection as an alternative to seeking to control or remove the infecting pathogen.
Subclinical infections are important since they allow infections to spread from a reserve of carriers. They also can cause clinical problems unrelated to the direct issue of infection. For example, in the case of urinary tract infections in women, this infection may cause preterm delivery if the person becomes pregnant without proper treatment.
An individual may only develop signs of an infection after a period of subclinical infection, a duration that is called the incubation period. This is the case, for example, for subclinical sexually transmitted diseases such as AIDS and genital warts. Individuals with such subclinical infections, and those that never develop overt illness, creates a reserve of individuals that can transmit an infectious agent to infect other individuals. Because such cases of infections do not come to clinical attention, health statistics can often fail to measure the true prevalence of an infection in a population, and this prevents the accurate modeling of its infectious transmission.
Pregnant women are more severely affected by influenza, hepatitis E, herpes simplex and malaria. The evidence is more limited for coccidioidomycosis, measles, smallpox, and varicella. Pregnancy may also increase susceptibility for toxoplasmosis.
During the 2009 H1N1 pandemic, as well as during interpandemic periods, women in the third trimester of pregnancy were at increased risk for severe
disease, such as disease requiring admission to an intensive care unit or resulting in death, as compared with women in an earlier stage of pregnancy.
For hepatitis E, the case fatality rate among pregnant women has been estimated to be between 15% and 25%, as compared with a range of 0.5 to 4% in the population overall, with the highest susceptibility in the third trimester.
Primary herpes simplex infection, when occurring in pregnant women, has an increased risk of dissemination and hepatitis, an otherwise rare complication in immunocompetent adults, particularly during the third trimester. Also, recurrences of herpes genitalis increase in
frequency during pregnancy.
The risk of severe malaria by "Plasmodium falciparum" is three times as high in pregnant women, with a median maternal mortality of 40% reported in studies in the Asia–Pacific region. In women where the pregnancy is not the first, malaria infection is more often asymptomatic, even at high parasite loads, compared to women having their first pregnancy. There is a decreasing susceptibility to malaria with increasing parity, probably due to immunity to pregnancy-specific antigens. Young maternal age and increases the risk. Studies differ whether the risk is different in different . Limited data suggest that malaria caused by "Plasmodium vivax" is also more severe during pregnancy.
Severe and disseminated coccidioidomycosis has been reported the occur in increased frequency in pregnant women in several reports and case series, but subsequent large surveys, with the overall risk being rather low.
Varicella occurs at an increased rate during pregnancy, but mortality is not higher than that among men and non-pregnant women.
Listeriosis mostly occurs during the third trimester, with Hispanic women appearing to be at particular risk. Listeriosis is a vertically transmitted infection that may cause miscarriage, stillbirth, preterm birth, or serious neonatal disease.
Some infections are vertically transmissible, meaning that they can affect the child as well.
Viral cardiomyopathy occurs when viral infections cause myocarditis with a resulting thickening of the myocardium and dilation of the ventricles. These viruses include Coxsackie B and adenovirus, echoviruses, influenza H1N1, Epstein-Barr virus, rubella (German measles virus), varicella (chickenpox virus), mumps, measles, parvoviruses, yellow fever, dengue fever, polio, rabies and the viruses that cause hepatitis A and C.
The best prevention against viral pneumonia is vaccination against influenza, adenovirus, chickenpox, herpes zoster, measles, and rubella.
It is caused by the bacteria "Rickettsia typhi", and is transmitted by the fleas that infest rats. While rat fleas are the most common vectors, cat fleas and mouse fleas are less common modes of transmission. These fleas are not affected by the infection. Human infection occurs because of flea-fecal contamination of the bites on human skin. Rats, cats, opossums maintain the rickettsia colonization by providing it with a host for its entire life cycle. Rats can develop the infection, and help spread the infection to other fleas that infect them, and help multiply the number of infected fleas that can then infect humans.
Less often, endemic typhus is caused by "Rickettsia felis" and transmitted by fleas carried by cats or opossums.
In the United States of America, murine typhus is found most commonly in southern California, Texas and Hawaii. In some studies, up to 13% of children were found to have serological evidence of infection.
The disease can be fatal if left untreated, but endemic typhus is highly treatable with antibiotics. Most people recover fully, but death may occur in the elderly, severely disabled or patients with a depressed immune system. The most effective antibiotics include tetracycline and chloramphenicol. In United States, CDC recommends solely doxycycline.
Viremia (UK: viraemia) is a medical condition where viruses enter the bloodstream and hence have access to the rest of the body. It is similar to "bacteremia", a condition where bacteria enter the bloodstream. The name comes from combining the word virus with the Greek word for blood ("haima"). It usually lasts for 4 to 5 days in the primary condition.
Common causes of viral pneumonia are:
- "Influenza virus" A and B
- "Respiratory syncytial virus" (RSV)
- "Human parainfluenza viruses" (in children)
Rarer viruses that commonly result in pneumonia include:
- "Adenoviruses" (in military recruits)
- "Metapneumovirus"
- "Severe acute respiratory syndrome virus" (SARS coronavirus)
- "Middle East respiratory syndrome virus" (MERS coronavirus)
Viruses that primarily cause other diseases, but sometimes cause pneumonia include:
- "Herpes simplex virus" (HSV), mainly in newborns or young children
- "Varicella-zoster virus" (VZV)
- "Measles virus"
- "Rubella virus"
- "Cytomegalovirus" (CMV), mainly in people with immune system problems
- "Smallpox virus"
- "dengue virus"
The most commonly identified agents in children are "respiratory syncytial virus", "rhinovirus", "human metapneumovirus", "human bocavirus", and "parainfluenza viruses".