Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The prevalence of Klippel–Feil syndrome is unknown due to the fact that there was no study done to determine the true prevalence.
Although the actual occurrence for the KFS syndrome is unknown, it is estimated to occur 1 in 40,000 to 42,000 newborns worldwide. In addition, females seem to be affected slightly more often than males.
The prevalence of congenital Chiari I malformation, defined as tonsilar herniations of 3 to 5 mm or greater, was previously believed to be in the range of one per 1000 births, but is likely much higher. Women are three times more likely than men to have a congenital Chiari malformation. Type II malformations are more prevalent in people of Celtic descent. A study using upright MRI found cerebellar tonsillar ectopia in 23% of adults with headache from motor-vehicle-accident head trauma. Upright MRI was more than twice as sensitive as standard MRI, likely because gravity affects cerebellar position.
Cases of congenital Chiari malformation may be explained by evolutionary and genetic factors. Typically, an infant's brain weighs around 400g at birth and triples to 1100-1400g by age 11. At the same time the cranium triples in volume from 500 cm to 1500 cm to accommodate the growing brain. During human evolution, the skull underwent numerous changes to accommodate the growing brain. The evolutionary changes included increased size and shape of the skull, decreased basal angle and basicranial length. These modifications resulted in significant reduction of the size of the posterior fossa in modern humans. In normal adults, the posterior fossa comprises 27% of the total intracranial space, while in adults with Chiari Type I, it is only 21%. If a modern brain is paired with a less modern skull, the posterior fossa may be too small, so that the only place where the cerebellum can expand is the foramen magnum, leading to development of Chiari Type I. H. neanderthalensis had platycephalic (flattened) skull. Some cases of Chiari are associated with platybasia (flattening of the skull base).
Studies have shown that obesity of the mother increases the risk of neural tube disorders such as iniencephaly by 1.7 fold while severe obesity increases the risk by over 3 fold.
Iniencephaly is thought to make up around 1% of all fetal abnormalities, with an incidence rate estimated at 0.1 to 10 in 10,000 deliveries.
For unknown reasons, this disease seems to occur most often in newborn females (about 90%).
Macrocephaly may be pathological, but many people with abnormally large heads or large skulls are healthy. Pathologic macrocephaly may be due to megalencephaly (enlarged brain), hydrocephalus (water on the brain), cranial hyperostosis (bone overgrowth), and other conditions. Pathologic macrocephaly is called "syndromic" when it is associated with any other noteworthy condition, and "nonsyndromic" otherwise. Pathologic macrocephaly can be caused by congenital anatomic abnormalities, genetic conditions, or by environmental events.
Many genetic conditions are associated with macrocephaly, including familial macrocephaly related to the holgate gene, autism, "PTEN" mutations such as Cowden disease, neurofibromatosis type 1, and tuberous sclerosis; overgrowth syndromes such as Sotos syndrome (cerebral gigantism), Weaver syndrome, Simpson-Golabi-Behmel syndrome (bulldog syndrome), and macrocephaly-capillary malformation (M-CMTC) syndrome; neurocardiofacial-cutaneous syndromes such as Noonan syndrome, Costello syndrome, Gorlin Syndrome, (also known as Basal Cell Nevus Syndrome) and cardiofaciocutaneous syndrome; Fragile X syndrome; leukodystrophies (brain white matter degeneration) such as Alexander disease, Canavan disease, and megalencephalic leukoencephalopathy with subcortical cysts; and glutaric aciduria type 1 and D-2-hydroxyglutaric aciduria.
At one end of the genetic spectrum, duplications of chromosomes have been found to be related to autism and macrocephaly; at the other end, deletions of chromosomes have been found to be related to schizophrenia and microcephaly.
Environmental events associated with macrocephaly include infection, neonatal intraventricular hemorrhage (bleeding within the infant brain), subdural hematoma (bleeding beneath the outer lining of the brain), subdural effusion (collection of fluid beneath the outer lining of the brain), and arachnoid cysts (cysts on the brain surface).
Macrocephaly is a condition in which the head is abnormally large; this includes the scalp, the cranial bone, and the contents of the cranium.
Environmental factors refer for example to maternal smoking and the maternal exposure to amine-containing drugs. Several research groups have found evidence that these environmental factors are responsible for an increase in the risk of craniosynostosis, likely through effects on fibroblast growth factor receptor genes.
On the other hand, a recent evaluation of valproic acid (an anti-epilepticum), which has been implicated as a causative agent, has shown no association with craniosynostosis.
Certain medication (like amine-containing drugs) can increase the risk of craniosynostosis when taken during pregnancy, these are so-called teratogenic factors.
The most widely accepted pathophysiological mechanism by which Chiari type I malformations occur is by a reduction or lack of development of the posterior fossa as a result of congenital or acquired disorders. Congenital causes include hydrocephalus, craniosynostosis (especially of the lambdoid suture), hyperostosis (such as craniometaphyseal dysplasia, osteopetrosis, erythroid hyperplasia), X-linked vitamin D-resistant rickets, and neurofibromatosis type I. Acquired disorders include space occupying lesions due to one of several potential causes ranging from brain tumors to hematomas.
Head trauma may cause cerebellar tonsillar ectopia, possibly because of dural strain. Additionally, ectopia may be present but asymptomatic until whiplash causes it to become symptomatic. Posterior fossa hypoplasia causes reduced cerebral and spinal compliance.
The heterogeneity of the Klippel–Feil syndrome has made it difficult to outline the diagnosis as well as the prognosis classes for this disease. Because of this, it has complicated the exact explanation of the genetic cause of the syndrome.
The prognosis for most individuals with KFS is good if the disorder is treated early on and appropriately. Activities that can injure the neck should be avoided, as it may contribute to further damage. Other diseases associated with the syndrome can be fatal if not treated, or if found too late to be treatable.
Basilar invagination can be present at birth. If the condition develops after birth, it is usually the result of injury or diseases. If due to injury, about half the time it is caused by vehicle or bicycle accidents; 25% of the time by falls and 10% of the time by recreational activities such as diving accidents.
It also occurs in patients with bone diseases, such as osteomalacia, rheumatoid arthritis, Paget's disease, Ehlers-Danlos syndrome, Marfan syndrome, and osteogenesis imperfecta.
A few studies have worked on providing details related to the outlook of disease progression. Two studies show that each year 0.5% of people who have never had bleeding from their brain cavernoma, but had symptoms of seizures, were affected by bleeding. In contrast, patients who have had bleeding from their brain cavernoma in the past had a higher risk of being affected by subsequent bleeding. The statistics for this are very broad, ranging from 4%-23% a year. Additional studies suggest that women and patients under the age of 40 are at higher risk of bleeding, but similar conducted studies did not reach the same conclusion. However, when cavernous hemangiomas are completely excised, there is very little risk of growth or rebleeding. In terms of life expectancy, not enough data has been collected on patients with this malformation in order to provide a representative statistical analysis.
Acalvaria usually occurs in less than 1 of every 100,000 births. By way of epidemiological data, it is thought that females are more prone to have this defect. Currently, acalvaria is not thought to have much of a risk of recurrence.
Biomechanical factors include fetal head constraint during pregnancy. It has been found by Jacob et al. that constraint inside the womb is associated with decreased expression of Indian Hedgehog protein and noggin. These last two are both important factors influencing bone development.
Prognosis varies widely depending on severity of symptoms, degree of intellectual impairment, and associated complications. Because the syndrome is rare and so newly identified, there are no long term studies.
Usually babies with this malformation do not survive past birth. However, there have been cases of survival. As of 2004, there were only two reported living cases. Of these two, one was severely cognitively impaired and physically disabled. The status of the other was unreported. If the fetus progresses to full term, there is the risk that it will have head trauma from the pressure applied to the head while being delivered. A few other cases of acalvaria have been reported, which did not progress to birth. In addition to the lack skull cap, there were brain malformations present in each case, and all of the pregnancies were terminated either electively or the fetuses were spontaneously aborted.
Mosaic mutations in PIK3CA have been found to be the genetic cause of M-CM. Genetic testing for the mutation is currently only available on a research basis. Other overgrowth conditions with distinct phenotypes have also been found to be caused by mosaic mutations in PIK3CA. How different mutations in this gene result in a variety of defined clinical syndromes is still being clarified. Mutations in PIK3CA have not been found in a non-mosaic state in any of these disorders, so it is unlikely that the conditions could be inherited.
The causes for PWS are either genetic or unknown. Some cases are a direct result of the RASA1 gene mutations. And individuals with RASA1 can be identified because this genetic mutation always causes multiple capillary malformations. PWS displays an autosomal dominant pattern of inheritance. This means that one copy of the damaged or altered gene is sufficient to elicit PWS disorder. In most cases, PWS can occur in people that have no family history of the condition. In such cases the mutation is sporadic. And for patients with PWS with the absence of multiple capillary mutations, the causes are unknown.
According to Boston’s Children Hospital, no known food, medications or drugs can cause PWS during pregnancy. PWS is not transmitted from person to person. But it can run in families and can be inherited. PWS effects both males and females equally and as of now no racial predominance is found
At the moment, there are no known measures that can be taken in order to prevent the onset of the disorder. But Genetic Testing Registry can be great resource for patients with PWS as it provides information of possible genetic tests that could be done to see if the patient has the necessary mutations. If PWS is sporadic or does not have RASA1 mutation then genetic testing will not work and there is not a way to prevent the onset of PWS.
Some studies suggest a hormonal link. Specifically, the hormone relaxin has been indicated.
A genetic factor is indicated since the trait runs in families and there is an increased occurrence in some ethnic populations (e.g., Native Americans, Lapps / Sami people). A locus has been described on chromosome 13. Beukes familial dysplasia, on the other hand, was found to map to an 11-cM region on chromosome 4q35, with nonpenetrant carriers not affected.
There are approximately three hundred known cases of Carpenter Syndrome in the United States. Only 1 in 1 million live births will result in an infant affected by Carpenter Syndrome (RN, 2007).
Carpenter Syndrome is an autosomal recessive disease which means both parents must have the faulty genes in order to pass the disease onto their children. Even if both parents possess the faulty gene there is still only a twenty five percent chance that they will produce a child affected by the syndrome. Their children who do not have the disease will still be carriers and possess the ability to pass the disease onto their offspring if their spouse is also a carrier of the particular gene.
Recent research has found that Dandy–Walker syndrome often occurs in patients with PHACES syndrome.
In most cases, a fetus with CPAM is closely monitored during pregnancy and the CPAM is removed via surgery after birth. Most babies with a CPAM are born without complication and are monitored during the first few months. Many patients have surgery, typically before their first birthday, because of the risk of recurrent lung infections associated with CPAMs. Some pediatric surgeons can safely remove these lesions using very tiny incisions using minimally invasive surgical techniques (thoracoscopy). However, some CPAM patients live a full life without any complication or incident. It is hypothesized that there are thousands of people living with an undetected CPAM. Through ultrasound testing employed in recent years, many more patients are aware that they live with this condition. Rarely, long standing CPAMs have been reported to become cancerous.
Very large cystic masses might pose a danger during birth because of the airway compression. In this situation, a special surgical type of delivery called the EXIT procedure may be used.
In rare extreme cases, where fetus's heart is in danger, fetal surgery can be performed to remove the CPAM. If non-immune hydrops fetalis develop, there is a near universal mortality of the fetus without intervention. Fetal surgery can improve the chances of survival to 50-60%. Recently, several studies found that a single course of prenatal steroids (betamethasone) may increase survival in hydropic fetuses with microcystic CPAMs to 75-100%. These studies indicate that large microcystic lesions may be treated prenatally without surgical intervention. Large macrocyst lesions may require in utero placement of a Harrison thoracoamniotic shunt.
Hip dysplasia is considered to be a multifactorial condition. That means that several factors are involved in causing the condition to manifest.
The cause of this condition is unknown; however, some factors of congenital hip dislocation are through heredity and racial background. It is also thought that the higher rates in some ethnic groups (such as some Native American groups) is due to the practice swaddling of infants, which is known to be a potential risk factor for developing dysplasia. It also has a low risk in African Americans and southern Chinese.
Lymphangiomas are rare, accounting for 4% of all vascular tumors in children. Although lymphangioma can become evident at any age, 50% are seen at birth, and 90% of lymphangiomas are evident by 2 years of age.
The true incidence of cavernous hemangiomas is difficult to estimate because they are frequently misdiagnosed as other venous malformations. Cavernous hemangiomas of the brain and spinal cord (cerebral cavernous hemangiomas (malformations) (CCM)), can appear at all ages but usually occur in the third to fourth decade of a person's life with no sexual preference. In fact, CCM is present in 0.5% of the population. However, approximately 40% of those with malformations have symptoms. Asymptomatic individuals are usually individuals that developed the malformation sporadically, while symptomatic individuals usually have inherited the genetic mutation. The majority of diagnoses of CCM are in adults; however, 25% of cases of CCM are children. Approximately 5% of adults have liver hemangiomas in the United States, but most are asymptomatic. Liver hemangiomas usually occur between the ages of 30-50 and more commonly in women. Cases of infantile liver cavernomas are extremely rare. Cavernous hemangioma of the eye is more prevalent in women than men and between the ages of 20-40.
The prognosis for lymphangioma circumscriptum and cavernous lymphangioma is generally excellent. This condition is associated with minor bleeding, recurrent cellulitis, and lymph fluid leakage. Two cases of lymphangiosarcoma arising from lymphangioma circumscriptum have been reported; however, in both of the patients, the preexisting lesion was exposed to extensive radiation therapy.
In cystic hygroma, large cysts can cause dysphagia, respiratory problems, and serious infection if they involve the neck. Patients with cystic hygroma should receive cytogenetic analysis to determine if they have chromosomal abnormalities, and parents should receive genetic counseling because this condition can recur in subsequent pregnancies.
Complications after surgical removal of cystic hygroma include damage to the structures in the neck, infection, and return of the cystic hygroma.