Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
There are many physical health factors associated with developmental disabilities. For some specific syndromes and diagnoses, these are inherent, such as poor heart function in people with Down syndrome. People with severe communication difficulties find it difficult to articulate their health needs, and without adequate support and education might not recognize ill health. Epilepsy, sensory problems (such as poor vision and hearing), obesity and poor dental health are over-represented in this population. Life expectancy among people with developmental disabilities as a group is estimated at 20 years below average, although this is improving with advancements in adaptive and medical technologies, and as people are leading healthier, more fulfilling lives, and some conditions (such as Freeman-Sheldon syndrome) do not impact life expectancy.
The causes of developmental disabilities are varied and remain unknown in a large proportion of cases. Even in cases of known etiology the line between "cause" and "effect" is not always clear, leading to difficulty in categorizing causes.
Genetic factors have long been implicated in the causation of developmental disabilities. There is also a large environmental component to these conditions, and the relative contributions of nature versus nurture have been debated for decades.
Current theories on causation focus on genetic factors, and over 1,000 known genetic conditions include developmental disabilities as a symptom.
Developmental disabilities affect between 1 and 2% of the population in most western countries, although many government sources acknowledge that statistics are flawed in this area. The worldwide proportion of people with developmental disabilities is believed to be approximately 1.4%. It is twice as common in males as in females, and some researchers have found that the prevalence of mild developmental disabilities is likely to be higher in areas of poverty and deprivation, and among people of certain ethnicities.
Among children, the cause of intellectual disability is unknown for one-third to one-half of cases. About 5% of cases are inherited from a person's parents. Genetic defects that cause intellectual disability but are not inherited can be caused by accidents or mutations in genetic development. Examples of such accidents are development of an extra chromosome 18 (trisomy 18) and Down syndrome, which is the most common genetic cause. Velocariofacial syndrome and fetal alcohol spectrum disorders are the two next most common causes. However, doctors have found many other causes. The most common are:
- Genetic conditions. Sometimes disability is caused by abnormal genes inherited from parents, errors when genes combine, or other reasons. The most prevalent genetic conditions include Down syndrome, Klinefelter syndrome, Fragile X syndrome (common among boys), neurofibromatosis, congenital hypothyroidism, Williams syndrome, phenylketonuria (PKU), and Prader–Willi syndrome. Other genetic conditions include Phelan-McDermid syndrome (22q13del), Mowat–Wilson syndrome, genetic ciliopathy, and Siderius type X-linked intellectual disability () as caused by mutations in the "PHF8" gene (). In the rarest of cases, abnormalities with the X or Y chromosome may also cause disability. 48, XXXX and 49, XXXXX syndrome affect a small number of girls worldwide, while boys may be affected by 49, XXXXY, or 49, XYYYY. 47, XYY is not associated with significantly lowered IQ though affected individuals may have slightly lower IQs than non-affected siblings on average.
- Problems during pregnancy. Intellectual disability can result when the fetus does not develop properly. For example, there may be a problem with the way the fetus' cells divide as it grows. A pregnant person who drinks alcohol (see fetal alcohol spectrum disorder) or gets an infection like rubella during pregnancy may also have a baby with intellectual disability.
- Problems at birth. If a baby has problems during labor and birth, such as not getting enough oxygen, he or she may have developmental disability due to brain damage.
- Exposure to certain types of disease or toxins. Diseases like whooping cough, measles, or meningitis can cause intellectual disability if medical care is delayed or inadequate. Exposure to poisons like lead or mercury may also affect mental ability.
- Iodine deficiency, affecting approximately 2 billion people worldwide, is the leading preventable cause of intellectual disability in areas of the developing world where iodine deficiency is endemic. Iodine deficiency also causes goiter, an enlargement of the thyroid gland. More common than full-fledged cretinism, as intellectual disability caused by severe iodine deficiency is called, is mild impairment of intelligence. Certain areas of the world due to natural deficiency and governmental inaction are severely affected. India is the most outstanding, with 500 million suffering from deficiency, 54 million from goiter, and 2 million from cretinism. Among other nations affected by iodine deficiency, China and Kazakhstan have instituted widespread iodization programs, whereas, as of 2006, Russia had not.
- Malnutrition is a common cause of reduced intelligence in parts of the world affected by famine, such as Ethiopia.
- Absence of the arcuate fasciculus.
Intellectual disability affects about 2–3% of the general population. 75–90% of the affected people have mild intellectual disability. Non-syndromic or idiopathic ID accounts for 30–50% of cases. About a quarter of cases are caused by a genetic disorder. Cases of unknown cause affect about 95 million people as of 2013.
Neurodevelopmental disorders are in their multitude associated with widely varying degrees of difficulty, depending on which there are different degrees of mental, emotional, physical, and economic consequences for individuals, and in turn families, groups and society.
Systemic infections can result in neurodevelopmental consequences, when they occur in infancy and childhood of humans, but would not be called a primary neurodevelopmental disorder per se, as for example HIV Infections of the head and brain, like brain abscesses, meningitis or encephalitis have a high risk of causing neurodevelopmental problems and eventually a disorder. For example, measles can progress to subacute sclerosing panencephalitis.
A number of infectious diseases can be transmitted either congenitally (before or at birth), and can cause serious neurodevelopmental problems, as for example the viruses HSV, CMV, rubella (congenital rubella syndrome), Zika virus, or bacteria like "Treponema pallidum" in congenital syphilis, which may progress to neurosyphilis if it remains untreated. Protozoa like "Plasmodium" or "Toxoplasma" which can cause congenital toxoplasmosis with multiple cysts in the brain and other organs, leading to a variety of neurological deficits.
Some cases of schizophrenia may be related to congenital infections though the majority are of unknown causes.
Learning disability is a classification that includes several areas of functioning in which a person has difficulty learning in a typical manner, usually caused by an unknown factor or factors. Given the "difficulty learning in a typical manner", this does not exclude the ability to learn in a different manner. Therefore, some people can be more accurately described as having a "Learning Difference", thus avoiding any misconception of being disabled with a lack of ability to learn and possible negative stereotyping.
In the UK, the term "learning disability" generally refers to an intellectual disability, while difficulties such as dyslexia and dyspraxia are usually referred to as "learning difficulties".
While "learning disability, learning disorder" and "learning difficulty" are often used interchangeably, they differ in many ways. Disorder refers to significant learning problems in an academic area. These problems, however, are not enough to warrant an official diagnosis. Learning disability, on the other hand, is an official clinical diagnosis, whereby the individual meets certain criteria, as determined by a professional (psychologist, pediatrician, etc.). The difference is in degree, frequency, and intensity of reported symptoms and problems, and thus the two should not be confused. When the term "learning disorder" is used, it describes a group of disorders characterized by inadequate development of specific academic, language, and speech skills. Types of learning disorders include reading (dyslexia), mathematics (dyscalculia) and writing (dysgraphia).
The unknown factor is the disorder that affects the brain's ability to receive and process information. This disorder can make it problematic for a person to learn as quickly or in the same way as someone who is not affected by a learning disability. People with a learning disability have trouble performing specific types of skills or completing tasks if left to figure things out by themselves or if taught in conventional ways.
Individuals with learning disabilities can face unique challenges that are often pervasive throughout the lifespan. Depending on the type and severity of the disability, interventions, and current technologies may be used to help the individual learn strategies that will foster future success. Some interventions can be quite simplistic, while others are intricate and complex. Current technologies may require student training to be effective classroom supports. Teachers, parents, and schools can create plans together that tailor intervention and accommodations to aid the individuals in successfully becoming independent learners. School psychologists and other qualified professionals quite often help design the intervention and coordinate the execution of the intervention with teachers and parents.
Several prenatal and perinatal complications have been reported as possible risk factors for autism. These risk factors include maternal gestational diabetes, maternal and paternal age over 30, bleeding after first trimester, use of prescription medication (e.g. valproate) during pregnancy, and meconium in the amniotic fluid. While research is not conclusive on the relation of these factors to autism, each of these factors has been identified more frequently in autistic children compared to their non-autistic siblings and other normally developing youth.
Low vitamin D levels in early development has been hypothesized as a risk factor for autism.
Autism spectrum disorders tend to be highly comorbid with other disorders. Comorbidity may increase with age and may worsen the course of youth with ASDs and make intervention/treatment more difficult. Distinguishing between ASDs and other diagnoses can be challenging, because the traits of ASDs often overlap with symptoms of other disorders, and the characteristics of ASDs make traditional diagnostic procedures difficult.
The most common medical condition occurring in individuals with autism spectrum disorders is seizure disorder or epilepsy, which occurs in 11-39% of individuals with ASD. Tuberous sclerosis, a medical condition in which non-malignant tumors grow in the brain and on other vital organs, occurs in 1-4% of individuals with ASDs.
Intellectual disabilities are some of the most common comorbid disorders with ASDs. Recent estimates suggest that 40-69% of individuals with ASD have some degree of an intellectual disability, more likely to be severe for females. A number of genetic syndromes causing intellectual disability may also be comorbid with ASD, including fragile X syndrome, Down syndrome, Prader-Willi and Angelman syndromes, and Williams syndrome.
Learning disabilities are also highly comorbid in individuals with an ASD. Approximately 25-75% of individuals with an ASD also have some degree of a learning disability.
Various anxiety disorders tend to co-occur with autism spectrum disorders, with overall comorbidity rates of 7-84%. Rates of comorbid depression in individuals with an ASD range from 4–58%. The relationship between ASD and schizophrenia remains a controversial subject under continued investigation, and recent meta-analyses have examined genetic, environmental, infectious, and immune risk factors that may be shared between the two conditions.
Deficits in ASD are often linked to behavior problems, such as difficulties following directions, being cooperative, and doing things on other people's terms. Symptoms similar to those of attention deficit hyperactivity disorder (ADHD) can be part of an ASD diagnosis.
Sensory processing disorder is also comorbid with ASD, with comorbidity rates of 42–88%.
The causes for learning disabilities are not well understood, and sometimes there is no apparent cause for a learning disability. However, some causes of neurological impairments include:
- Heredity and genetics
- Problems during pregnancy and birth
- Accidents after birth
Intellectual disability in children can be caused by genetic or environmental factors. The individual could have a natural brain malformation or pre or postnatal damage done to the brain caused by drowning or a traumatic brain injury, for example. Nearly 30 to 50% of individuals with intellectual disability will never know the cause of their diagnosis even after thorough investigation.
Prenatal causes of intellectual disability include:
- Congenital infections such as cytomegalovirus, toxoplasmosis, herpes, syphilis, rubella and human immunodeficiency virus
- Prolonged maternal fever in the first trimester
- Exposure to anticonvulsants or alcohol
- Untreated maternal phenylketonuria (PKU)
- Complications of prematurity, especially in extremely low-birth-weight infants
- Postnatal exposure to lead
Single-gene disorders that result in intellectual disability include:
- Fragile X syndrome
- Neurofibromatosis
- Tuberous sclerosis
- Noonan's syndrome
- Cornelia de Lange's syndrome
These single-gene disorders are usually associated with atypical physical characteristics.
About 1/4 of individuals with intellectual disability have a detectable chromosomal abnormality. Others may have small amounts of deletion or duplication of chromosomes, which may go unnoticed and therefore, undetermined.
There is some evidence that children with AS may see a lessening of symptoms; up to 20% of children may no longer meet the diagnostic criteria as adults, although social and communication difficulties may persist. As of 2006, no studies addressing the long-term outcome of individuals with Asperger syndrome are available and there are no systematic long-term follow-up studies of children with AS. Individuals with AS appear to have normal life expectancy, but have an increased prevalence of comorbid psychiatric conditions, such as major depressive disorder and anxiety disorder that may significantly affect prognosis. Although social impairment may be lifelong, the outcome is generally more positive than with individuals with lower functioning autism spectrum disorders; for example, ASD symptoms are more likely to diminish with time in children with AS or HFA. Most students with AS/HFA have average mathematical ability and test slightly worse in mathematics than in general intelligence, but some are gifted in mathematics. AS has potentially been linked to some accomplishments, such as Vernon L. Smith winning the Nobel Memorial Prize in Economic Sciences; however, Smith is self-diagnosed.
Although many attend regular education classes, some children with AS may utilize special education services because of their social and behavioral difficulties. Adolescents with AS may exhibit ongoing difficulty with self care or organization, and disturbances in social and romantic relationships. Despite high cognitive potential, most young adults with AS remain at home, yet some do marry and work independently. The "different-ness" adolescents experience can be traumatic. Anxiety may stem from preoccupation over possible violations of routines and rituals, from being placed in a situation without a clear schedule or expectations, or from concern with failing in social encounters; the resulting stress may manifest as inattention, withdrawal, reliance on obsessions, hyperactivity, or aggressive or oppositional behavior. Depression is often the result of chronic frustration from repeated failure to engage others socially, and mood disorders requiring treatment may develop. Clinical experience suggests the rate of suicide may be higher among those with AS, but this has not been confirmed by systematic empirical studies.
Education of families is critical in developing strategies for understanding strengths and weaknesses; helping the family to cope improves outcomes in children. Prognosis may be improved by diagnosis at a younger age that allows for early interventions, while interventions in adulthood are valuable but less beneficial. There are legal implications for individuals with AS as they run the risk of exploitation by others and may be unable to comprehend the societal implications of their actions.
There are a variety of medical conditions affecting cognitive ability. This is a broad concept encompassing various intellectual or cognitive deficits, including intellectual disability, deficits too mild to properly qualify as intellectual disability, various specific conditions (such as specific learning disability), and problems acquired later in life through acquired brain injuries or neurodegenerative diseases like dementia. These disabilities may appear at any age.
Dyslexic children require special instruction for word analysis and spelling from an early age. While there are fonts that may help people with dyslexia better understand writing, this might simply be due to the added spacing between words. The prognosis, generally speaking, is positive for individuals who are identified in childhood and receive support from friends and family.
There are a number of factors that could potentially contribute to the development of feeding and eating disorders of infancy or early childhood. These factors include:
- Physiological – a chemical imbalance effecting the child's appetite could cause a feeding or eating disorder.
- Developmental – developmental abnormalities in oral-sensory, oral-motor, and swallowing can impact the child's eating ability and elicit a feeding or eating disorder.
- Environmental – simple issues such as inconsistent meal times can cause a feeding or eating disorder. Giving the child food that they are not developmentally acquired for can also cause these disorders. Family dysfunction and sociocultural issues could also play a role in feeding or eating disorders.
- Relational – when the child is not securely attached to the mother, it can cause feeding interactions to become disturbed or unnatural. Other factors, such as parental emotional unavailability and parental eating disorders, can cause feeding and eating disorders in their children.
- Psychological and behavioral – these factors include one involving the child's temperament. Characteristics such as being anxious, impulsive, distracted, or strong-willed personality types are ones that could affect the child's eating and cause a disorder. The individual could have learned to reject food due to a traumatic experience such as choking or being force fed.
Frequency estimates vary enormously. In 2015 it was estimated that 37.2 million people globally are affected. A 2003 review of epidemiological studies of children found autism rates ranging from 0.03 to 4.84 per 1,000, with the ratio of autism to Asperger syndrome ranging from 1.5:1 to 16:1; combining the geometric mean ratio of 5:1 with a conservative prevalence estimate for autism of 1.3 per 1,000 suggests indirectly that the prevalence of AS might be around 0.26 per 1,000. Part of the variance in estimates arises from differences in diagnostic criteria. For example, a relatively small 2007 study of 5,484 eight-year-old children in Finland found 2.9 children per 1,000 met the ICD-10 criteria for an AS diagnosis, 2.7 per 1,000 for Gillberg and Gillberg criteria, 2.5 for DSM-IV, 1.6 for Szatmari "et al.", and 4.3 per 1,000 for the union of the four criteria. Boys seem to be more likely to have AS than girls; estimates of the sex ratio range from 1.6:1 to 4:1, using the Gillberg and Gillberg criteria. Females with autism spectrum disorders may be underdiagnosed.
Anxiety disorder and major depressive disorder are the most common conditions seen at the same time; comorbidity of these in persons with AS is estimated at 65%. Reports have associated AS with medical conditions such as aminoaciduria and ligamentous laxity, but these have been case reports or small studies and no factors have been associated with AS across studies. One study of males with AS found an increased rate of epilepsy and a high rate (51%) of nonverbal learning disorder. AS is associated with tics, Tourette syndrome, and bipolar disorder, and the repetitive behaviors of AS have many similarities with the symptoms of obsessive–compulsive disorder and obsessive–compulsive personality disorder. However many of these studies are based on clinical samples or lack standardized measures; nonetheless, comorbid conditions are relatively common.
Nonverbal learning disorder (also known as nonverbal learning disability, NLD, or NVLD) is a learning disorder characterized by verbal strengths as well as visual-spatial, motor, and social skills difficulties. It is sometimes confused with Asperger Syndrome or high IQ. Nonverbal learning disorder has never been included in the American Psychiatric Association's "Diagnostic and Statistical Manual of Mental Disorders" or the World Health Organization's "International Classification of Diseases".
Late talker is a term used for exceptionally bright people who experience a delay in the development of speech. Commonalities include usually being boys, delayed speech development, highly educated parents, musically gifted families, puzzle-solving abilities, and lagging social development. Many high-achieving late talkers were notoriously strong willed and noncompliant as children. Late talkers can often be misdiagnosed early on as having severe ("low-functioning") autism spectrum disorder (a category known simply as "autism", prior to the DSM-5), and careful professional evaluation is necessary for differential diagnosis, according to Darold Treffert and other experts. One major difference between late talkers and low-functioning autistic children is that for late talkers, communication skills automatically reach a normal level and the child requires no further special treatment with regards to speech. Outlook for late talkers with or without intervention is generally favorable. However, late language emergence can also be an early or secondary sign of high-functioning autism spectrum disorder / Asperger syndrome, or other developmental disorders, such as attention deficit hyperactivity disorder, intellectual disability, learning disability, social communication disorder, or specific language impairment.
Einstein syndrome, a term coined by the economist Thomas Sowell, is also sometimes used to describe late talkers. The term is named after Albert Einstein (often said to have been a late talker, though with questionable evidence), whom Sowell used as the primary example of a late talker in his work. Sowell also included Edward Teller, Srinivasa Ramanujan, the mathematician Julia Robinson, Richard Feynman, and the pianists Clara Schumann and Arthur Rubinstein to be in the late talkers group. As a toddler, the scientist John Clive Ward showed similar behavioral traits to those described by Sowell, according to a brief sketch of his biography.
Sowell claimed late talkers are often inaccurately categorized as having an autism spectrum disorder (ASD), and that a small subset of late talkers are highly intelligent children with common characteristics concentrated in music, memory, math or the sciences. However, as reported by Simon Baron-Cohen, such characteristics are often found in high-functioning autism / Asperger syndrome.
The only certain way to prevent FAS is to avoid drinking alcohol during pregnancy. In the United States, the Surgeon General recommended in 1981, and again in 2005, that women abstain from alcohol use while pregnant or while planning a pregnancy, the latter to avoid damage even in the earliest stages (even weeks) of a pregnancy, as the woman may not be aware that she has conceived. In the United States, federal legislation has required that warning labels be placed on all alcoholic beverage containers since 1988 under the Alcoholic Beverage Labeling Act.
There is some controversy surrounding the "zero-tolerance" approach taken by many countries when it comes to alcohol consumption during pregnancy. The assertion that moderate drinking causes FAS is said to lack strong evidence and, in fact, the practice of equating a responsible level of drinking with potential harm to the fetus may have negative social, legal, and health impacts. In addition, special care should be taken when considering statistics on this disease, as prevalence and causation is often linked with FASD, which is more common and causes less harm, as opposed to FAS.
Dyscalculia is thought to be present in 3–6% of the general population, but estimates by country and sample vary somewhat. Many studies have found prevalence rates by gender to be equivalent. Those that find gender difference in prevalence rates often find dyscalculia higher in females, but some few studies have found prevalence rates higher in males.
Dyslexia, also known as reading disorder, is characterized by trouble with reading despite normal intelligence. Different people are affected to varying degrees. Problems may include difficulties in spelling words, reading quickly, writing words, "sounding out" words in the head, pronouncing words when reading aloud and understanding what one reads. Often these difficulties are first noticed at school. When someone who previously could read loses their ability, it is known as alexia. The difficulties are involuntary and people with this disorder have a normal desire to learn.
Dyslexia is believed to be caused by both genetic and environmental factors. Some cases run in families. It often occurs in people with attention deficit hyperactivity disorder (ADHD) and is associated with similar difficulties with numbers. It may begin in adulthood as the result of a traumatic brain injury, stroke, or dementia. The underlying mechanisms of dyslexia are problems within the brain's language processing. Dyslexia is diagnosed through a series of tests of memory, spelling, vision, and reading skills. Dyslexia is separate from reading difficulties caused by hearing or vision problems or by insufficient teaching.
Treatment involves adjusting teaching methods to meet the person's needs. While not curing the underlying problem, it may decrease the degree of symptoms. Treatments targeting vision are not effective. Dyslexia is the most common learning disability and occurs in all areas of the world. It affects 3–7% of the population, however, up to 20% may have some degree of symptoms. While dyslexia is more often diagnosed in men, it has been suggested that it affects men and women equally. Some believe that dyslexia should be best considered as a different way of learning, with both benefits and downsides.
Neurodegeneration is the umbrella term for the progressive loss of structure or function of neurons, including death of neurons. Many neurodegenerative diseases including Parkinson's, Alzheimer's, and Huntington's occur as a result of neurodegenerative processes. As research progresses, many similarities appear which relate these diseases to one another on a sub-cellular level. Discovering these similarities offers hope for therapeutic advances that could ameliorate many diseases simultaneously.
Dementia is a serious loss of cognitive ability in a previously unimpaired person, beyond what might be expected from normal aging. Both dementia and intellectual disability are defined by neurologists as having an IQ that is two standard deviations below median (below about 70, when 100 is the median); the difference between these two classifications for intellectual disability is whether the low IQ represents a lifelong condition (intellectual disability), or a condition that is acquired later (dementia).
Dementia may be static, the result of a unique global brain injury, or progressive, resulting in long-term decline due to damage or disease in the body. In the early stages of Alzheimer's disease, whose symptoms of dementia are called "mild cognitive impairment", the person typically loses 8 to 10 IQ points per year, with the result that a person of previously normal intelligence usually becomes intellectually disabled in less than five years.
For many adopted or adults and children in foster care, records or other reliable sources may not be available for review. Reporting alcohol use during pregnancy can also be stigmatizing to birth mothers, especially if alcohol use is ongoing. In these cases, all diagnostic systems use an unknown prenatal alcohol exposure designation. A diagnosis of FAS is still possible with an unknown exposure level if other key features of FASD are present at clinical levels.
Dyscalculia is difficulty in learning or comprehending arithmetic, such as difficulty in understanding numbers, learning how to manipulate numbers, and learning facts in mathematics. It is generally seen as a specific developmental disorder.
Dyscalculia can occur in people from across the whole IQ range – often higher than average – along with difficulties with time, measurement, and spatial reasoning. Estimates of the prevalence of dyscalculia range between 3 and 6% of the population. In 2004, it was reported that a quarter of children with dyscalculia had ADHD.
In 2015, it was established that 11% of children with dyscalculia also have ADHD. Dyscalculia has also been associated with people who have Turner syndrome and people who have spina bifida.
Mathematical disabilities can occur as the result of some types of brain injury, in which case the proper term, acalculia, is to distinguish it from dyscalculia which is of innate, genetic or developmental origin.
Considered to be neurologically based, nonverbal learning disorder is characterized by verbal strengths as well as visual-spatial, motor, and social skills difficulties. People with this disorder may not at times comprehend nonverbal cues such as facial expression or tone of voice. Challenges with mathematics and handwriting are common.
While various nonverbal impairments were recognized since early studies in child neurology, there is ongoing debate as to whether/or the extent to which existing conceptions of NLD provide a valid diagnostic framework. As originally presented "nonverbal disabilities" (p. 44) or "disorders of nonverbal learning" (p. 272) was a category encompassing non-linguistic learning problems (Johnson and Myklebust, 1967). "Nonverbal learning disabilities" were further discussed by Myklebust in 1975 as representing a subtype of learning disability with a range of presentations involving "mainly visual cognitive processing," social imperception, a gap between higher verbal ability and lower performance IQ, as well as difficulty with handwriting. Later neuropsychologist Byron Rourke sought to develop consistent criteria with a theory and model of brain functioning that would establish NLD as a distinct syndrome (1989).
Questions remain about how best to frame the perceptual, cognitive and motor issues associated with NLD.
The DSM-5 (Diagnostic and Statistical Manual) and ICD-10 (International Classification of Diseases) do not include NLD as a diagnosis.
Assorted diagnoses have been discussed as sharing symptoms with NLD—these conditions include Right hemisphere brain damage and Developmental Right Hemisphere Syndrome, Developmental Coordination Disorder, Social-Emotional Processing Disorder, Asperger syndrome, Gerstmann syndrome and others.
Labels for specific associated issues include visual-spatial deficit, dyscalculia, dysgraphia, as well as dyspraxia.
In their 1967 book "Learning Disabilities; Educational Principles and Practices", Doris J. Johnson and Helmer R. Myklebust characterize how someone with these kinds of disabilities appears in a classroom: "An example is the child who fails to learn the meaning of the actions of others...We categorize this child as having a deficiency in social perception, meaning that he has an inability which precludes acquiring the significance of basic nonverbal aspects of daily living, though his verbal level of intelligence falls within or above the average." (p. 272). In their chapter "Nonverbal Disorders Of Learning" (p. 272-306) are sections titled "Learning Though Pictures," (274) "Gesture," (281) "Nonverbal Motor Learning," (282) "Body Image," (285) "Spatial Orientation," (290) "Right-Left Orientation," (292) "Social Imperception," (295) "Distractibility, Perseveration, and Disinhibition." (298)