Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Smoking increases the risk of developing gastric cancer significantly, from 40% increased risk for current smokers to 82% increase for heavy smokers. Gastric cancers due to smoking mostly occur in the upper part of the stomach near the esophagus. Some studies show increased risk with alcohol consumption as well.
Dietary factors are not proven causes, but some foods including smoked foods, salt and salt-rich foods, red meat, processed meat, pickled vegetables, and bracken are associated with a higher risk of stomach cancer. Nitrates and nitrites in cured meats can be converted by certain bacteria, including "H. pylori", into compounds that have been found to cause stomach cancer in animals.
Fresh fruit and vegetable intake, citrus fruit intake, and antioxidant intake are associated with a lower risk of stomach cancer. A Mediterranean diet is associated with lower rates of stomach cancer, as is regular aspirin use.
Obesity is a physical risk factor that has been found to increase the risk of gastric adenocarcinoma by contributing to the development of gastroesophageal reflux disease (GERD). The exact mechanism by which obesity causes GERD is not completely known. Studies hypothesize that increased dietary fat leading to increased pressure on the stomach and the lower esophageal sphincter, due to excess adipose tissue, could play a role, yet no statistically significant data has been collected. However, the risk of gastric cardia adenocarcinoma, with GERD present, has been found to increase more than 2 times for an obese person. There is a correlation between iodine deficiency and gastric cancer.
The two major risk factors for esophageal squamous-cell carcinoma are tobacco (smoking or chewing) and alcohol. The combination of tobacco and alcohol has a strong synergistic effect. Some data suggest that about half of all cases are due to tobacco and about one-third to alcohol, while over three-quarters of the cases in men are due to the combination of smoking and heavy drinking. Risks associated with alcohol appear to be linked to its aldehyde metabolite and to mutations in certain related enzymes. Such metabolic variants are relatively common in Asia.
Other relevant risk factors include regular consumption of very hot drinks (over 65 °C)(149 Fahrenheit) and ingestion of caustic substances. High levels of dietary exposure to nitrosamines (chemical compounds found both in tobacco smoke and certain foodstuffs) also appear to be a relevant risk factor. Unfavorable dietary patterns seem to involve exposure to nitrosamines through processed and barbecued meats, pickled vegetables, etc., and a low intake of fresh foods. Other associated factors include nutritional deficiencies, low socioeconomic status, and poor oral hygiene. Chewing betel nut (areca) is an important risk factor in Asia.
Physical trauma may increase the risk. This may include the drinking of very hot drinks.
Male predominance is particularly strong in this type of esophageal cancer, which occurs about 7 to 10 times more frequently in men. This imbalance may be related to the characteristics and interactions of other known risk factors, including acid reflux and obesity.
The long-term erosive effects of acid reflux (an extremely common condition, also known as gastroesophageal reflux disease or GERD) have been strongly linked to this type of cancer. Longstanding GERD can induce a change of cell type in the lower portion of the esophagus in response to erosion of its squamous lining. This phenomenon, known as Barrett's esophagus, seems to appear about 20 years later in women than in men, maybe due to hormonal factors. Having symptomatic GERD or bile reflux makes Barrett's esophagus more likely, which in turn raises the risk of further changes that can ultimately lead to adenocarcinoma. The risk of developing adenocarcinoma in the presence of Barrett's esophagus is unclear, and may in the past have been overestimated.
Being obese or overweight both appear to be associated with increased risk. The association with obesity seems to be the strongest of any type of obesity-related cancer, though the reasons for this remain unclear. Abdominal obesity seems to be of particular relevance, given the closeness of its association with this type of cancer, as well as with both GERD and Barrett's esophagus. This type of obesity is characteristic of men. Physiologically, it stimulates GERD and also has other chronic inflammatory effects.
"Helicobacter pylori" infection (a common occurrence thought to have affected over half of the world's population) is not a risk factor for esophageal adenocarcinoma and actually appears to be protective. Despite being a cause of GERD and a risk factor for gastric cancer, the infection seems to be associated with a reduced risk of esophageal adenocarcinoma of as much as 50%. The biological explanation for a protective effect is somewhat unclear. One explanation is that some strains of "H. pylori" reduce stomach acid, thereby reducing damage by GERD. Decreasing rates of "H. pylori" infection in Western populations over recent decades, which have been linked to better hygiene and increased refrigeration of food, could be a factor in the concurrent increase in esophageal adenocarcinoma.
Female hormones may also have a protective effect, as EAC is not only much less common in women but develops later in life, by an average of 20 years. Although studies of many reproductive factors have not produced a clear picture, risk seems to decline for the mother in line with prolonged periods of breastfeeding.
Tobacco smoking increases risk, but the effect in esophageal adenocarcinoma is slight compared to that in squamous cell carcinoma, and alcohol has not been demonstrated to be a cause.
Cancer of the stomach, also called gastric cancer, is the fourth-most-common type of cancer and the second-highest cause of cancer death globally. Eastern Asia (China, Japan, Korea, Mongolia) is a high-risk area for gastric cancer, and North America, Australia, New Zealand and western and northern Africa are areas with low risk. The most common type of gastric cancer is adenocarcinoma, which causes about 750,000 deaths each year. Important factors that may contribute to the development of gastric cancer include diet, smoking and alcohol consumption, genetic aspects (including a number of heritable syndromes) and infections (for example, "Helicobacter pylori" or Epstein-Barr virus) and pernicious anemia. Chemotherapy improves survival compared to best supportive care, however the optimal regimen is unclear.
Little research is conducted on these cancers due to their relative rarity when compared to the more common colorectal cancers. APC-min mice which carry a gene deficiency corresponding to that of humans with FAP also go on to develop small intestinal tumors, though humans do not.
Barrett's esophagus is a premalignant condition. Its malignant sequela, oesophagogastric junctional adenocarcinoma, has a mortality rate of over 85%. The risk of developing esophageal adenocarcinoma in people who have Barrett's esophagus has been estimated to be 6–7 per 1000 person-years, however a cohort study of 11,028 patients from Denmark published in 2011 showed an incidence of only 1.2 per 1000 person-years (5.1 per 1000 person-years in patients with dysplasia, 1.0 per 1000 person-years in patients without dysplasia). The relative risk of esophageal adenocarcinoma is approximately 10 in those with Barret's esophagus, compared to the general population. Most patients with esophageal carcinoma survive less than one year.
Pancreatic cancer is the fifth-most-common cause of cancer deaths in the United States, and the seventh most common in Europe. In 2008, globally there were 280,000 new cases of pancreatic cancer reported and 265,000 deaths. These cancers are classified as endocrine or nonendocrine tumors. The most common is ductal adenocarcinoma. The most significant risk factors for pancreatic cancer are advanced age (over 60) and smoking. Chronic pancreatitis, diabetes or other conditions may also be involved in their development. Early pancreatic cancer does not tend to result in any symptom, but when a tumor is advanced, a patient may experience severe pain in the upper abdomen, possibly radiating to the back. Another symptom might be jaundice, a yellowing of the skin and eyes.
Pancreatic cancer has a poor prognosis, with a five-year survival rate of less than 5%. By the time the cancer is diagnosed, it is usually at an advanced, inoperable stage. Only one in about fifteen to twenty patients is curative surgery attempted. Pancreatic cancer tends to be aggressive, and it resists radiotherapy and chemotherapy.
Risk factors for small intestine cancer include:
- Crohn's disease
- Celiac disease
- Radiation exposure
- Hereditary gastrointestinal cancer syndromes: familial adenomatous polyposis, hereditary nonpolyposis colorectal cancer, Peutz-Jeghers syndrome
- Males are 25% more likely to develop the disease
Benign tumours and conditions that may be mistaken for cancer of the small bowel:
- Hamartoma
- Tuberculosis
The incidence in the United States among Caucasian men is eight times the rate among Caucasian women and five times greater than African American men. Overall, the male to female ratio of Barrett's esophagus is 10:1. Several studies have estimated the prevalence of Barrett's esophagus in the general population to be 1.3% to 1.6% in two European populations (Italian and Swedish), and 3.6% in a Korean population.
Around 75% of cases are caused by alcohol and tobacco use.
Tobacco smoke is one of the main risk factors for head and neck cancer and one of the most carcinogenic compounds in tobacco smoke is acrylonitrile. (See Tobacco smoking). Acrylonitrile appears to indirectly cause DNA damage by increasing oxidative stress, leading to increased levels of 8-oxo-2'-deoxyguanosine (8-oxo-dG) and formamidopyrimidine in DNA (see image). Both 8-oxo-dG and formamidopyrimidine are mutagenic. DNA glycosylase NEIL1 prevents mutagenesis by 8-oxo-dG and removes formamidopyrimidines from DNA.
However, cigarette smokers have a lifetime increased risk for head and neck cancers that is 5- to 25-fold increased over the general population.
The ex-smoker's risk for squamous cell cancer of the head and neck begins to approach the risk in the general population twenty years after smoking cessation. The high prevalence of tobacco and alcohol use worldwide and the high association of these cancers with these substances makes them ideal targets for enhanced cancer prevention.
Smokeless tobacco is cause of oral and pharyngeal cancers (oropharyngeal cancer). Cigar smoking is an important risk factor for oral cancers as well.
Other environmental carcinogens suspected of being potential causes of head and neck cancer include occupational exposures such as nickel refining, exposure to textile fibers, and woodworking. Use of marijuana, especially while younger, is linked to an increase in squamous-cell carcinoma cases while other studies suggest use is not shown to be associated with oral squamous cell carcinoma, or associated with decreased squamous cell carcinoma.
Excessive consumption of processed meats and red meat were associated with increased rates of cancer of the head and neck in one study, while consumption of raw and cooked vegetables seemed to be protective.
Vitamin E was not found to prevent the development of leukoplakia, the white plaques that are the precursor for carcinomas of the mucosal surfaces, in adult smokers.
Another study examined a combination of Vitamin E and beta carotene in smokers with early-stage cancer of the oropharynx, and found a worse prognosis in the vitamin users.
Worldwide approximately 18% of cancer deaths are related to infectious diseases. This proportion ranges from a high of 25% in Africa to less than 10% in the developed world. Viruses are the usual infectious agents that cause cancer but cancer bacteria and parasites may also play a role.
"Oncovirus"es (viruses that can cause cancer) include human papillomavirus (cervical cancer), Epstein–Barr virus (B-cell lymphoproliferative disease and nasopharyngeal carcinoma), Kaposi's sarcoma herpesvirus (Kaposi's sarcoma and primary effusion lymphomas), hepatitis B and hepatitis C viruses (hepatocellular carcinoma) and human T-cell leukemia virus-1 (T-cell leukemias). Bacterial infection may also increase the risk of cancer, as seen in "Helicobacter pylori"-induced gastric carcinoma. Parasitic infections associated with cancer include "Schistosoma haematobium" (squamous cell carcinoma of the bladder) and the liver flukes, "Opisthorchis viverrini" and "Clonorchis sinensis" (cholangiocarcinoma).
Diet, physical inactivity and obesity are related to up to 30–35% of cancer deaths. In the United States excess body weight is associated with the development of many types of cancer and is a factor in 14–20% of cancer deaths. A UK study including data on over 5 million people showed higher body mass index to be related to at least 10 types of cancer and responsible for around 12,000 cases each year in that country. Physical inactivity is believed to contribute to cancer risk, not only through its effect on body weight but also through negative effects on the immune system and endocrine system. More than half of the effect from diet is due to overnutrition (eating too much), rather than from eating too few vegetables or other healthful foods.
Some specific foods are linked to specific cancers. A high-salt diet is linked to gastric cancer. Aflatoxin B1, a frequent food contaminant, causes liver cancer. Betel nut chewing can cause oral cancer. National differences in dietary practices may partly explain differences in cancer incidence. For example, gastric cancer is more common in Japan due to its high-salt diet while colon cancer is more common in the United States. Immigrant cancer profiles develop mirror that of their new country, often within one generation.
Studies suggest that drinking alcohol during pregnancy may affect the likelihood of breast cancer in daughters. "For women who are pregnant, ingestion of alcohol, even in moderation, may lead to elevated circulating oestradiol levels, either through a reduction of melatonin or some other mechanism. This may then affect the developing mammary tissue such that the lifetime risk of breast cancer is raised in their daughters."
Smoking tobacco appears to increase the risk of breast cancer, with the greater the amount smoked and the earlier in life that smoking began, the higher the risk. In those who are long-term smokers, the risk is increased 35% to 50%. A lack of physical activity has been linked to about 10% of cases. Sitting regularly for prolonged periods is associated with higher mortality from breast cancer. The risk is not negated by regular exercise, though it is lowered.
There is an association between use of hormonal birth control and the development of premenopausal breast cancer, but whether oral contraceptives use may actually cause premenopausal breast cancer is a matter of debate. If there is indeed a link, the absolute effect is small. Additionally, it is not clear if the association exists with newer hormonal birth controls. In those with mutations in the breast cancer susceptibility genes "BRCA1" or "BRCA2", or who have a family history of breast cancer, use of modern oral contraceptives does not appear to affect the risk of breast cancer.
The association between breast feeding and breast cancer has not been clearly determined; some studies have found support for an association while others have not. In the 1980s, the abortion–breast cancer hypothesis posited that induced abortion increased the risk of developing breast cancer. This hypothesis was the subject of extensive scientific inquiry, which concluded that neither miscarriages nor abortions are associated with a heightened risk for breast cancer.
A number of dietary factors have been linked to the risk for breast cancer. Dietary factors which may increase risk include a high fat diet, high alcohol intake, and obesity-related high cholesterol levels. Dietary iodine deficiency may also play a role. Evidence for fiber is unclear. A 2015 review found that studies trying to link fiber intake with breast cancer produced mixed results. In 2016 a tentative association between low fiber intake during adolescence and breast cancer was observed.
Other risk factors include radiation and shift-work. A number of chemicals have also been linked, including polychlorinated biphenyls, polycyclic aromatic hydrocarbons, and organic solvents Although the radiation from mammography is a low dose, it is estimated that yearly screening from 40 to 80 years of age will cause approximately 225 cases of fatal breast cancer per million women screened.
In some population studies moderate alcohol consumption is associated with increase the breast cancer risk.
In contrast, research by the Danish National Institute for Public Health, comprising 13,074 women aged 20 to 91 years, found that moderate drinking had virtually no effect on breast cancer risk.
Studies that control for screening incidence show no association with moderate drinking and breast cancer, e.g.. Moderate drinkers tend to screen more which results in more diagnoses of breast cancer, including mis-diagnoses. A recent study of 23 years of breast cancer screening in the Netherlands concluded that 50% of diagnoses were over-diagnoses.
Risk factors can be divided into two categories:
- "modifiable" risk factors (things that people can change themselves, such as consumption of alcoholic beverages), and
- "fixed" risk factors (things that cannot be changed, such as age and biological sex).
The primary risk factors for breast cancer are being female and older age. Other potential risk factors include genetics, lack of childbearing or lack of breastfeeding, higher levels of certain hormones, certain dietary patterns, and obesity. Recent studies have indicated that exposure to light pollution is a risk factor for the development of breast cancer.
Gastroesophageal reflux disease (GERD) affects approximately 40% of adults. Strictures occur in 7 to 23% of patients with GERD who are untreated.
Adult survivors of childhood cancer have some physical, psychological, and social difficulties.
Premature heart disease is a major long-term complication in adult survivors of childhood cancer. Adult survivors are eight times more likely to die of heart disease than other people, and more than half of children treated for cancer develop some type of cardiac abnormality, although this may be asymptomatic or too mild to qualify for a clinical diagnosis of heart disease.
While some dietary factors have been associated with prostate cancer the evidence is still tentative. Evidence supports little role for dietary fruits and vegetables in prostate cancer occurrence. Red meat and processed meat also appear to have little effect in human studies. Higher meat consumption has been associated with a higher risk in some studies.
Lower blood levels of vitamin D may increase the risk of developing prostate cancer.
Folic acid supplements have no effect on the risk of developing prostate cancer.
GERD may lead to Barrett's esophagus, a type of intestinal metaplasia, which is in turn a precursor condition for esophageal cancer. The risk of progression from Barrett's to dysplasia is uncertain, but is estimated at about 20% of cases. Due to the risk of chronic heartburn progressing to Barrett's, EGD every five years is recommended for people with chronic heartburn, or who take drugs for chronic GERD.
Familial and genetic factors are identified in 5-15% of childhood cancer cases. In <5-10% of cases, there are known environmental exposures and exogenous factors, such as prenatal exposure to tobacco, X-rays, or certain medications. For the remaining 75-90% of cases, however, the individual causes remain unknown. In most cases, as in carcinogenesis in general, the cancers are assumed to involve multiple risk factors and variables.
Aspects that make the risk factors of childhood cancer different from those seen in adult cancers include:
- Different, and sometimes unique, exposures to environmental hazards. Children must often rely on adults to protect them from toxic environmental agents.
- Immature physiological systems to clear or metabolize environmental substances
- The growth and development of children in phases known as "developmental windows" result in certain "critical windows of vulnerability".
Also, a longer life expectancy in children avails for a longer time to manifest cancer processes with long latency periods, increasing the risk of developing some cancer types later in life.
There are preventable causes of childhood malignancy, such as delivery overuse and misuse of ionizing radiation through computed tomography scans when the test is not indicated or when adult protocols are used.
GERD is caused by a failure of the lower esophageal sphincter. In healthy patients, the "Angle of His"—the angle at which the esophagus enters the stomach—creates a valve that prevents duodenal bile, enzymes, and stomach acid from traveling back into the esophagus where they can cause burning and inflammation of sensitive esophageal tissue.
Factors that can contribute to GERD:
- Hiatal hernia, which increases the likelihood of GERD due to mechanical and motility factors.
- Obesity: increasing body mass index is associated with more severe GERD. In a large series of 2,000 patients with symptomatic reflux disease, it has been shown that 13% of changes in esophageal acid exposure is attributable to changes in body mass index.
- Zollinger-Ellison syndrome, which can be present with increased gastric acidity due to gastrin production.
- A high blood calcium level, which can increase gastrin production, leading to increased acidity.
- Scleroderma and systemic sclerosis, which can feature esophageal dysmotility.
- The use of medicines such as prednisolone.
- Visceroptosis or Glénard syndrome, in which the stomach has sunk in the abdomen upsetting the motility and acid secretion of the stomach.
GERD has been linked to a variety of respiratory and laryngeal complaints such as laryngitis, chronic cough, pulmonary fibrosis, earache, and asthma, even when not clinically apparent. These atypical manifestations of GERD are commonly referred to as laryngopharyngeal reflux (LPR) or as extraesophageal reflux disease (EERD).
Factors that have been linked with GERD, but not conclusively:
- Obstructive sleep apnea
- Gallstones, which can impede the flow of bile into the duodenum, which can affect the ability to neutralize gastric acid
In 1999, a review of existing studies found that, on average, 40% of GERD patients also had "H. pylori" infection. The eradication of "H. pylori" can lead to an increase in acid secretion, leading to the question of whether "H. pylori"-infected GERD patients are any different than non-infected GERD patients. A double-blind study, reported in 2004, found no clinically significant difference between these two types of patients with regard to the subjective or objective measures of disease severity.
There are also some links between prostate cancer and medications, medical procedures, and medical conditions. Use of the cholesterol-lowering drugs known as the statins may also decrease prostate cancer risk.
Infection or inflammation of the prostate (prostatitis) may increase the chance for prostate cancer while another study shows infection may help prevent prostate cancer by increasing blood flow to the area. In particular, infection with the sexually transmitted infections chlamydia, gonorrhea, or syphilis seems to increase risk. Finally, obesity and elevated blood levels of testosterone may increase the risk for prostate cancer. There is an association between vasectomy and prostate cancer; however, more research is needed to determine if this is a causative relationship.
Research released in May 2007, found that US war veterans who had been exposed to Agent Orange had a 48% increased risk of prostate cancer recurrence following surgery.