Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The disorder is extraordinarily rare. While individuals of all backgrounds have been reported with the disorder, there is a higher inclination towards males (75% or more). The average age of those with Ganser syndrome is 32 and it stretches from ages 15 to 62 years old. It has been reported in children.
The disorder is apparently most common in men and prisoners, although prevalence data and familial patterns are not established.
Hospitalization may be necessary during the acute phase of symptoms, and psychiatric care if the patient is a danger to self or others. A neurological consult is advised to rule out any organic cause.
There are many possible causes for this disorder. One such possibility is an underlying personality disorder. Individuals with FD may be trying to repeat a satisfying childhood relationship with a doctor. Perhaps also an individual has a desire to deceive or test authority figures. The underlying desire to resume the role of a patient and be cared for can also be considered an underlying personality disorder. Abuse, neglect, or abandonment during childhood are also probable causes.
These individuals may be trying to reenact unresolved issues with their parents. A history of frequent illnesses may also contribute to the development of this disorder. In some cases, individuals afflicted with FD are accustomed to actually being sick, and thus return to their previous state to recapture what they once considered the 'norm.' Another cause is a history of close contact with someone (a friend or family member) who had a severe or chronic condition. The patients found themselves subconsciously envious of the attention said relation received, and felt that they themselves faded into the background. Thus medical attention makes them feel glamorous and special.
Some individuals experience only a few outbreaks of the disorder. However, in most cases, factitious disorder is a chronic and long-term condition that is difficult to treat. There are relatively few positive outcomes for this disorder; in fact, treatment provided a lower percentage of positive outcomes than did treatment of individuals with obvious psychotic symptoms such as people with schizophrenia. In addition, many individuals with factitious disorder do not present for treatment, often insisting their symptoms are genuine. Some degree of recovery, however, is possible. The passage of time seems to help the disorder greatly. There are many possible explanations for this occurrence, although none are currently considered definitive. It may be that an FD individual has mastered the art of feigning sickness over so many years of practice that the disorder can no longer be discerned. Another hypothesis is that many times an FD individual is placed in a home, or experiences health issues that are not self-induced or feigned. In this way, the problem with obtaining the 'patient' status is resolved because symptoms arise without any effort on the part of the individual.
Risk factors for mental illness include genetic inheritance, such as parents having depression, or a propensity for high neuroticism or "emotional instability".
In depression, parenting risk factors include parental unequal treatment, and there is association with high cannabis use.
In schizophrenia and psychosis, risk factors include migration and discrimination, childhood trauma, bereavement or separation in families, and abuse of drugs, including cannabis, and urbanicity.
In anxiety, risk factors may include family history (e.g. of anxiety), temperament and attitudes (e.g. pessimism), and parenting factors including parental rejection, lack of parental warmth, high hostility, harsh discipline, high maternal negative affect, anxious childrearing, modelling of dysfunctional and drug-abusing behaviour, and child abuse (emotional, physical and sexual).
Environmental events surrounding pregnancy and birth have also been implicated. Traumatic brain injury may increase the risk of developing certain mental disorders. There have been some tentative inconsistent links found to certain viral infections, to substance misuse, and to general physical health.
Social influences have been found to be important, including abuse, neglect, bullying, social stress, traumatic events and other negative or overwhelming life experiences. For bipolar disorder, stress (such as childhood adversity) is not a specific cause, but does place genetically and biologically vulnerable individuals at risk for a more severe course of illness. The specific risks and pathways to particular disorders are less clear, however. Aspects of the wider community have also been implicated, including employment problems, socioeconomic inequality, lack of social cohesion, problems linked to migration, and features of particular societies and cultures.
Correlations of mental disorders with drug use include cannabis, alcohol and caffeine, use of which appears to promote anxiety. For psychosis and schizophrenia, usage of a number of drugs has been associated with development of the disorder, including cannabis, cocaine, and amphetamines. There has been debate regarding the relationship between usage of cannabis and bipolar disorder.
Pseudodementia is a phenotype approximated by a wide variety of underlying disorders (1). Data indicate that some of the disorders that can convert to a pseudodementia-like presentation include depression (mood), schizophrenia, mania, dissociative disorders, Ganser syndrome, conversion reaction, and psychoactive drugs (2). Although the frequency distribution of disorders presenting as pseudodementia remains unclear, what is clear is that depressive pseudodementia, synonymously referred to as depressive dementia(3) or major depression with depressive dementia (4), represents a major subclass of the overarching category of pseudodementia (4).
It has long been observed that in the differential diagnosis between dementia and pseudodementia, depressive pseudodementia appears to be the single most difficult disorder to distinguish from nosologically established "organic" categories of dementia(5), especially degenerative dementia of the Alzheimer type (6).
Depressive Pseudodementia is a syndrome seen in older people in which they exhibit symptoms consistent with dementia but the cause is actually depression.
Older people with predominant cognitive symptoms such as loss of memory, and vagueness, as well as prominent slowing of movement and reduced or slowed speech, were sometimes misdiagnosed as having dementia when further investigation showed they were suffering from a major depressive episode. This was an important distinction as the former was untreatable and progressive and the latter treatable with antidepressant therapy or electroconvulsive therapy or both. In contrast to major depression, dementia is a progressive neurodegenerative syndrome involving a pervasive impairment of higher cortical functions resulting from widespread brain pathology.
In medicine a broad definition of syndrome is used, which describes a collection of symptoms and findings without necessarily tying them to a single identifiable pathogenesis. The more specific definition employed in medical genetics describes a subset of all medical syndromes.
A syndrome is a set of medical signs and symptoms occurring together, constitutes a particular disease or disorder. The word derives from the Greek σύνδρομον, meaning "concurrence". In some instances, a syndrome is so closely linked with a pathogenesis or cause that the words "syndrome", "disease", and "disorder" end up being used interchangeably for them. This is especially true of inherited syndromes. For example, Down syndrome, Wolf–Hirschhorn syndrome, and Andersen syndrome are disorders with known pathogeneses, so each is more than just a set of signs and symptoms, despite the "syndrome" nomenclature. In other instances, a syndrome is not specific to only one disease. For example, toxic shock syndrome can be caused by various toxins; premotor syndrome can be caused by various brain lesions; and premenstrual syndrome is not a disease but simply a set of symptoms.
If an underlying genetic cause is suspected but not known, a condition may be referred to as a genetic association (often just "association" in context). By definition, an association indicates that the collection of signs and symptoms occurs in combination more frequently than would be likely by chance alone.
Syndromes are often named after the physician or group of physicians that discovered them or initially described the full clinical picture. Such eponymous syndrome names are examples of medical eponyms. Recently, there has been a shift towards naming conditions descriptively (by symptoms or underlying cause) rather than eponymously, but the eponymous syndrome names often persist in common usage.
Typically, females and older patients with organic brain changes are more likely to develop Pisa syndrome. Organic brain changes are physical changes in the brain which lead to neurological dysfunction, including dementia and frontal lobe syndrome. This includes the presence of neurodegenerative illnesses such as Alzheimer's Disease and Parkinson's Disease.
Williams syndrome is a microdeletion syndrome caused by the spontaneous deletion of genetic material from the region q11.23 of one member of the pair of chromosome 7, so that the person is hemizygous for those genes. The deleted region includes more than 25 genes, and researchers believe that being hemizygous for these genes probably contributes to the characteristic features of this syndrome. "CLIP2", "ELN", "GTF2I", "GTF2IRD1", and "LIMK1" are among the genes that are typically deleted from one chromosome in people with Williams syndrome. Researchers have found this hemizygosity for the "ELN" gene, which codes for the protein elastin, is associated with the connective-tissue abnormalities and cardiovascular disease (specifically supravalvular aortic stenosis and supravalvular pulmonary stenosis) found in many people with this syndrome. The insufficient supply of elastin may also be the cause of full cheeks, harsh or hoarse voice, hernias and bladder diverticula often found in those with Williams syndrome. Studies suggest that hemizygosity in "LIMK1", "GTF2I", "GTF2IRD1", and perhaps other genes may help explain the characteristic difficulties with visual–spatial tasks. Additionally, there is evidence that the hemizygosity in several of these genes, including "CLIP2", may contribute to the unique behavioral characteristics, learning disabilities, and other cognitive difficulties seen in Williams syndrome.
It is not possible to make a generalised prognosis for development due to the variability of causes, as mentioned above, the differing types of symptoms and cause. Each case must be considered individually.
The prognosis for children with idiopathic West syndrome are mostly more positive than for those with the cryptogenic or symptomatic forms. Idiopathic cases are less likely to show signs of developmental problems before the attacks begin, the attacks can often be treated more easily and effectively and there is a lower relapse rate. Children with this form of the syndrome are less likely to go on to develop other forms of epilepsy; around two in every five children develop at the same rate as healthy children.
In other cases, however, treatment of West syndrome is relatively difficult and the results of therapy often dissatisfying; for children with symptomatic and cryptogenic West syndrome, the prognosis is generally not positive, especially when they prove resistant to therapy.
Statistically, 5 out of every 100 children with West syndrome do not survive beyond five years of age, in some cases due to the cause of the syndrome, in others for reasons related to their medication. Only less than half of all children can become entirely free from attacks with the help of medication. Statistics show that treatment produces a satisfactory result in around three out of ten cases, with only one in every 25 children's cognitive and motoric development developing more or less normally.
A large proportion (up to 90%) of children suffer severe physical and cognitive impairments, even when treatment for the attacks is successful. This is not usually because of the epileptic fits, but rather because of the causes behind them (cerebral anomalies or their location or degree of severity). Severe, frequent attacks can (further) damage the brain.
Permanent damage often associated with West syndrome in the literature include cognitive disabilities, learning difficulties and behavioural problems, cerebral palsy (up to 5 out of 10 children), psychological disorders and often autism (in around 3 out of 10 children). Once more, the cause of each individual case of West syndrome must be considered when debating cause and effect.
As many as 6 out of 10 children with West syndrome suffer from epilepsy later in life. Sometimes West syndrome turns into a focal or other generalised epilepsy. Around half of all children develop Lennox-Gastaut syndrome.
West syndrome appears in 1% to 5% of infants with Down syndrome. This form of epilepsy is relatively difficult to treat in children who do not have the chromosomal abnormalities involved in Down syndrome. However, in children with Down syndrome, the syndrome is often far more mild, and the children often react better to medication. The German Down Syndrom InfoCenter noted in 2003 that what was normally a serious epilepsy was in such cases often a relatively benign one.
EEG records for children with Down syndrome are often more symmetrical with fewer unusual findings. Although not all children can become entirely free from attacks with medication, children with Down syndrome are less likely to go on to develop Lennox-Gastaut syndrome or other forms of epilepsy than those without additional hereditary material on the 21st chromosome. The reason why it is easier to treat children with Down syndrome is not known.
If, however, a child with Down syndrome has seizures that are difficult to control, the child should be accessed for autistic spectrum disorder.
Pisa syndrome is predominantly caused by a prolonged administration or an overly dosed administration of antipsychotic drugs. Although antipsychotic drugs are known to be the main drugs that are concerned with this syndrome, several other drugs are reported to have caused the syndrome as well. Certain antidepressants, psychoactive drugs, and antiemetics have also been found to cause Pisa syndrome in patients.
Drugs found to have caused Pisa Syndrome:
- Atypical antipsychotic drugs- ex. clozapine, aripiprazole
- Tricyclic antidepressants- ex. clomipramine
- Psychoactive drugs
- Antiemetic drugs
- Cholinesterase inhibitors
- Galantamine
Based on the drugs that caused Pisa syndrome, it has been implicated that the syndrome may be due to a dopaminergic-cholinergic imbalance or a serotonergic or noradrenergic dysfunction. For the development of Pisa syndrome that cannot be alleviated by anticholinergic drugs, it has been considered that asymmetric brain functions or neural transmission may be the underlying mechanism. How these drugs interact with the biochemistry of the brain to cause the syndrome is unknown and a topic of current research.
As the syndrome is due to a chromosomal non-disjunction event, the recurrence risk is not high compared to the general population. There has been no evidence found that indicates non-disjunction occurs more often in a particular family.
The history of disturbance in pseudodementia is often short and abrupt onset, while dementia is more often insidious. Clinically, people with pseudodementia differ from those with true dementia when their memory is tested. They will often answer that they don't know the answer to a question, and their attention and concentration are often intact, and they may appear upset or distressed. Those with true dementia will often give wrong answers, have poor attention and concentration, and appear indifferent or unconcerned.
Investigations such as SPECT imaging of the brain show reduced blood flow in areas of the brain in people with Alzheimer's disease, compared with a more normal blood flow in those with pseudodementia.
In mild cases, individuals with XXXY syndrome may lead a relatively good life. These individuals may face difficulties in communicating with others due to their language-based deficits. These deficits may make forming bonds with others difficult, but fulfilling relationships with others are still achievable. Those with higher scores in adaptive functioning are likely to have higher quality of life because they can be independent.
Williams syndrome has historically been estimated to occur in roughly 1 in every 20,000 live births. However, more recent epidemiological studies have placed the occurrence rate at closer to 1 in every 7,500 live births, a significantly larger prevalence. As an increasing body of evidence suggests that Williams syndrome is more common than originally noted (approximately 6% of all genetic cases of developmental disability), researchers have begun to theorize past under-diagnosis of the syndrome. One theorized reason for the increase in epidemiological estimates is that there exists a substantial minority of individuals with the genetic markers of Williams syndrome who lack the characteristic facial features or the diminished IQ considered to be diagnostic of the syndrome, who often are not immediately recognized as people with the syndrome.
Between 5 and 15% of children with Down syndrome in Sweden attend regular school. Some graduate from high school; however, most do not. Of those with intellectual disability in the United States who attended high school about 40% graduated. Many learn to read and write and some are able to do paid work. In adulthood about 20% in the United States do paid work in some capacity. In Sweden, however, less than 1% have regular jobs. Many are able to live semi-independently, but they often require help with financial, medical, and legal matters. Those with mosaic Down syndrome usually have better outcomes.
Individuals with Down syndrome have a higher risk of early death than the general population. This is most often from heart problems or infections. Following improved medical care, particularly for heart and gastrointestinal problems, the life expectancy has increased. This increase has been from 12 years in 1912, to 25 years in the 1980s, to 50 to 60 years in the developed world in the 2000s. Currently between 4 and 12% die in the first year of life. The probability of long-term survival is partly determined by the presence of heart problems. In those with congenital heart problems 60% survive to 10 years and 50% survive to 30 years of age. In those without heart problems 85% survive to 10 years and 80% survive to 30 years of age. About 10% live to 70 years of age. The National Down Syndrome Society have developed information regarding the positive aspects of life with Down syndrome.
Males with Down syndrome usually do not father children, while females have lower rates of fertility relative to those who are unaffected. Fertility is estimated to be present in 30–50% of females. Menopause typically occurs at an earlier age. The poor fertility in males is thought to be due to problems with sperm development; however, it may also be related to not being sexually active. As of 2006, three instances of males with Down syndrome fathering children and 26 cases of females having children have been reported. Without assisted reproductive technologies, around half of the children of someone with Down syndrome will also have the syndrome.
In the United States, sarcoidosis has a prevalence of approximately 10 cases per 100,000 whites and 36 cases per 100,000 blacks. Heerfordt syndrome is present in 4.1–5.6% of those with sarcoidosis.
Reye syndrome occurs almost exclusively in children. While a few adult cases have been reported over the years, these cases do not typically show permanent neural or liver damage. Unlike in the UK, the surveillance for Reye syndrome in the US is focused on patients under 18 years of age.
In 1980, after the CDC began cautioning physicians and parents about the association between Reye syndrome and the use of salicylates in children with chickenpox or virus-like illnesses, the incidence of Reye syndrome in the United States began to decline. However, the decline began prior to the FDA's issue of warning labels on aspirin in 1986. In the United States between 1980 and 1997, the number of reported cases of Reye syndrome decreased from 555 cases in 1980 to about 2 cases per year since 1994. During this time period 93% of reported cases for which racial data were available occurred in whites and the median age was six years. In 93% of cases a viral illness had occurred in the preceding three-week period. For the period 1991-1994, the annual rate of hospitalizations due to Reye syndrome in the US was estimated to be between 0.2 and 1.1 per million population less than 18 years of age.
During the 1980s, a case-control study carried out in the United Kingdom also demonstrated an association between Reye syndrome and aspirin exposure. In June 1986, the United Kingdom Committee on Safety of Medicines issued warnings against the use of aspirin in children under 12 years of age and warning labels on aspirin-containing medications were introduced. UK surveillance for Reye syndrome documented a decline in the incidence of the illness after 1986. The reported incidence rate of Reye syndrome decreased from a high of 0.63 per 100,000 population less than 12 years of age in 1983/84 to 0.11 in 1990/91.
From November 1995 to November 1996 in France, a national survey of pediatric departments for children under 15 years of age with unexplained encephalopathy and a threefold (or greater) increase in serum aminotransferase and/or ammonia led to the identification of nine definite cases of Reye syndrome (0.79 cases per million children). Eight of the nine children with Reye syndrome were found to have been exposed to aspirin. In part because of this survey result, the French Medicines Agency reinforced the international attention to the relationship between aspirin and Reye syndrome by issuing its own public and professional warnings about this relationship.
Documented cases of Reye syndrome in adults are rare. The recovery of adults with the syndrome is generally complete, with liver and brain function returning to normal within two weeks of onset. In children, however, mild to severe permanent brain damage is possible, especially in infants. Over thirty percent of the cases reported in the United States from 1981 through 1997 resulted in fatality.
The prognosis varies widely from case to case, depending on the severity of the symptoms. However, almost all people reported with Aicardi syndrome to date have experienced developmental delay of a significant degree, typically resulting in mild to moderate to profound intellectual disability. The age range of the individuals reported with Aicardi syndrome is from birth to the mid 40s.
There is no cure for this syndrome.
Nevo Syndrome is considered to be a rare disorder. Since its first appearance in 1974, only a handful of cases have been reported. Studies have shown showing similarities between Nevo Syndrome with Ehlers-Danlos syndrome as well as Sotos syndrome. There is an astounding overlap of phenotypic manifestations between Nevo Syndrome and the more frequent Sotos syndrome, which are both caused by the NSD1 deletion. Sotos syndrome is an autosomal dominant condition associated with learning disabilities, a distinctive facial appearance, and overgrowth. Studies have shown an overwhelming occurrence (half of those involved in the study) of Nevo syndrome in those individuals of Middle-Eastern descent.