Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
With no particular affinity to any particular ethnic group, seen in all age groups and equally amongst males and females, the precise prevalence is not known.
Although wetness alone has the effect of macerating the skin, softening the stratum corneum, and greatly increasing susceptibility to friction injury, urine has an additional impact on skin integrity because of its effect on skin pH. While studies show that ammonia alone is only a mild skin irritant, when urea breaks down in the presence of fecal urease it increases pH because ammonia is released, which in turn promotes the activity of fecal enzymes such as protease and lipase. These fecal enzymes increase the skin's hydration and permeability to bile salts which also act as skin irritants.
There is no detectable difference in rates of diaper rash in conventional disposable diaper wearers and reusable cloth diaper wearers. "Babies wearing superabsorbent disposable diapers with a central gelling material have fewer episodes of diaper dermatitis compared with their counterparts wearing cloth diapers. However, keep in mind that superabsorbent diapers contain dyes that were suspected to cause allergic contact dermatitis (ACD)." Whether wearing cloth or disposable diapers they should be changed frequently to prevent diaper rash, even if they don't feel wet. To reduce the incidence of diaper rash, disposable diapers have been engineered to pull moisture away from the baby's skin using synthetic non-biodegradable gel. Today, cloth diapers use newly available superabsorbent microfiber cloth placed in a pocket with a layer of light permeable material that contacts the skin. This design serves to pull moisture away from the skin in to the microfiber cloth. This technology is used in most major pocket cloth diapers brands today.
The interaction between fecal enzyme activity and IDD explains the observation that infant diet and diaper rash are linked because fecal enzymes are in turn affected by diet. Breast-fed babies, for example, have a lower incidence of diaper rash, possibly because their stools have higher pH and lower enzymatic activity. Diaper rash is also most likely to be diagnosed in infants 8–12 months old, perhaps in response to an increase in eating solid foods and dietary changes around that age that affect fecal composition. Any time an infant’s diet undergoes a significant change (i.e. from breast milk to formula or from milk to solids) there appears to be an increased likelihood of diaper rash.
The link between feces and IDD is also apparent in the observation that infants are more susceptible to developing diaper rash after treating with antibiotics, which affect the intestinal microflora. Also, there is an increased incidence of diaper rash in infants who have suffered from diarrhea in the previous 48 hours, which may be because fecal enzymes such as lipase and protease are more active in feces which have passed rapidly through the gastrointestinal tract.
An intertrigo usually develops from the chafing of warm, moist skin in the areas of the inner thighs and genitalia, the armpits, under the breasts, the underside of the belly, behind the ears, and the web spaces between the toes and fingers. An intertrigo usually appears red and raw-looking, and may also itch, ooze, and be sore. Intertrigos occur more often among overweight individuals, those with diabetes, those restricted to bed rest or diaper use, and those who use medical devices, like artificial limbs, that trap moisture against the skin. Also, there are several skin diseases that can cause an intertrigo to develop, such as dermatitis or inverse psoriasis.
Bacterial intertrigo can be caused by "Streptococci" and "Corynebacterium minutissimum".
Cosmetics play an important role as causal factors for perioral dermatitis. Regular generous applications of moisturising creams cause persistent hydration of the horny layer causing impairment and occlusion of the barrier function, irritation of the hair follicle and proliferation of skin flora. Combining this with night cream and foundation significantly increases risk of perioral dermatitis by 13-fold.
Reports of perioral dermatitis in renal transplant recipients treated with oral corticosteroids and azathioprine have been documented.
Other rashes that occur in a widespread distribution can look like an id reaction. These include atopic dermatitis, contact dermatitis, dyshidrosis, photodermatitis, scabies and drug eruptions.
There is no good evidence that a mother's diet during pregnancy, the formula used, or breastfeeding changes the risk. There is tentative evidence that probiotics in infancy may reduce rates but it is insufficient to recommend its use.
People with eczema should not get the smallpox vaccination due to risk of developing eczema vaccinatum, a potentially severe and sometimes fatal complication.
The prevalence of nummular dermatitis in the United States is approximately 2 per 1,000. It is considered a disease of adulthood, for it is rare in children.
Most cases are well managed with topical treatments and ultraviolet light. About 2% of cases are not. In more than 60% of young children, the condition subsides by adolescence.
Many contact sensitizers or irritants are known to cause contact dermatitis superimposed on nummular dermatitis. Studies have implicated nickel, cobalt, chromate, and fragrance as likely culprits. Xerosis, or dehydration of skin is also a likely cause. Infection with "Staphylococcus aureus" bacteria or "Candida" may also play a role.
Irritant contact dermatitis (ICD) can be divided into forms caused by chemical irritants, and those caused by physical irritants. Common chemical irritants implicated include: solvents (alcohol, xylene, turpentine, esters, acetone, ketones, and others); metalworking fluids (neat oils, water-based metalworking fluids with surfactants); latex; kerosene; ethylene oxide; surfactants in topical medications and cosmetics (sodium lauryl sulfate); and alkalis (drain cleaners, strong soap with lye residues).
Physical irritant contact dermatitis may most commonly be caused by low humidity from air conditioning. Also, many plants directly irritate the skin.
Rosin, the material commonly used to wax string instruments is known to cause allergic contact dermatitis in musicians. Nickel, a metal found in musical instruments causes allergic contact dermatitis on the fingers and hands of string instrumentalists and in the lip and neck of wind instrumentalists. Wind instrumentalists with lip and neck infection should switch to gold or plastic mouthpieces if allergic dermatitis occurs. (R)-4-methoxydalbergione present in rosewood may cause allergic contact dermatitis in violinists. Cane reed (causing chelitis in saxophone players), propolis (a wax used to close structural gaps in musical instruments), paraphenylenediamine (used to polish musical instruments) and potassium dichromate (tanning agent to the skin of the harp) also cause allergic contact dermatitis in musicians.
It can be treated with systemic antiviral drugs, such as aciclovir or valganciclovir. Foscarnet may also be used for immunocompromised host with Herpes simplex and acyclovir-resistant Herpes simplex.
According to the hygiene hypothesis, when children are brought up exposed to allergens in the environment at a young age, their immune system is more likely to tolerate them, while children brought up in a modern "sanitary" environment are less likely to be exposed to those allergens at a young age, and, when they are finally exposed, develop allergies. There is some support for this hypothesis with respect to AD. Those exposed to dogs while growing up have a lower risk of atopic dermatitis. There is also support from epidemiological studies for a protective role for helminths against AD. Likewise children with poor hygiene are at a lower risk for developing AD, as are children who drink unpasteurised milk.
In a small percentage of cases, atopic dermatitis is caused by sensitization to foods. Also, exposure to allergens, either from food or the environment, can exacerbate existing atopic dermatitis. Exposure to dust mites, for example, is believed to contribute to one's risk of developing AD. A diet high in fruits seems to have a protective effect against AD, whereas the opposite seems true for fast foods. Atopic dermatitis sometimes appears to be associated with celiac disease and non-celiac gluten sensitivity, and the improvement with a gluten-free diet indicates that gluten is a causative agent in these cases.
The intense contact between a musical instrument and skin may exaggerate existing skin conditions or cause new skin skin conditions. Skin conditions like hyperhidrosis, lichen planus, psoriasis, eczema, and urticaria may be caused in instrumental musicians due to occupational exposure and stress. Allergic contact dermatitis and irritant contact dermatitis are the most common skin conditions seen in string musicians.
In an industrial setting the employer has a duty of care to its worker to provide the correct level of safety equipment to mitigate exposure to harmful irritants. This can take the form of protective clothing, gloves, or barrier cream, depending on the working environment.
Topical antibiotics should not be used to prevent infection in wounds after surgery. When they are used, it is inappropriate, and the person recovering from surgery is at significantly increased risk of developing contact dermatitis.
Urushiol-induced contact dermatitis is caused by contact with a plant or any other object containing urushiol oil. The oil adheres to almost anything with which it comes in contact, such as towels, blankets, clothing, and landscaping tools. Clothing or other materials that touch the plant and then, before being washed, touch the skin are common causes of exposure.
For people who have never been exposed or are not yet allergic to urushiol, it may take 10 to 21 days for a reaction to occur the first time. Once allergic to urushiol, however, most people break out 48 to 72 hours after contact with the oil. Typically, individuals have been exposed at least once, if not several times, before they develop a rash. The rash typically persists one to two weeks, but in some cases may last up to five weeks.
Urushiol is primarily found in the spaces between cells beneath the outer skin of the plant, so the effects are less severe if the plant tissue remains undamaged on contact. Once the oil and resin are thoroughly washed from the skin, the rash is not contagious. Urushiol does not always spread once it has bonded with the skin, and cannot be transferred once the urushiol has been washed away.
Although simple skin exposure is most common, ingestion of urushiol can lead to serious, systemic reactions. Burning plant material is commonly said to create urushiol-laden smoke that causes a systemic reaction, as well as a rash in the throat and eyes. Firefighters often get rashes and eye inflammation from smoke-related contact. A high-temperature bonfire may incinerate urushiol before it can cause harm, while a smoldering fire may vaporize the volatile oil and spread it as white smoke. However, some sources dispute the danger of burning urushiol-containing plant material.
A recent retrospective study of all cases of Ecthyma gangrenosum from 2004-2010 in a university hospital in Mexico shows that neutropenia in immunocompromised patients is the most common risk factor for ecthyma gangrenosum.
Garlic allergy or allergic contact dermatitis to garlic is a common inflammatory skin condition caused by contact with garlic oil or dust. It mostly affects people who cut and handle fresh garlic, such as chefs, and presents on the tips of the thumb, index and middle fingers of the non-dominant hand (which typically hold garlic bulbs during the cutting). The affected fingertips show an asymmetrical pattern of fissure as well as thickening and shedding of the outer skin layers, which may progress to second- or third-degree burn of injured skin.
Garlic dermatitis is similar to the tulip dermatitis and is induced by a combined mechanical and chemical action. Whereas the former mechanism acts via skin rubbing which progresses into damage, the major cause of the latter is the chemical diallyl disulfide (DADS), together with related compounds allyl propyl disulfide and allicin. These chemicals occur in oils of plants of the genus "Allium", including garlic, onion and leek.
Garlic allergy has been known since at least 1950. It is not limited to hand contact, but can also be induced, with different symptoms, by inhaling garlic dust or ingesting raw garlic, though the latter cases are relatively rare. DADS penetrates through most types of commercial gloves, and thus wearing gloves while handling garlic has proven inefficient against the allergy. Treatment includes avoiding any contact with garlic oil or vapours, as well as medication, such as administering acitretin (25 mg/day, orally) or applying psoralen and ultraviolet light to the affected skin area over a period of 12 weeks (PUVA therapy).
A rarely cited double-blind study in 1982 reported that a course of oral urushiol usually hyposensitized subjects.
Eyelid dermatitis is commonly related to atopic dermatitis or allergic contact dermatitis. Volatile substances, tosylamide, epoxy hardeners, insect sprays, and lemon peel oil may be implicated, with many cases of eyelid contact dermatitis being caused by substances transferred by the hands to the eyelids.
Atopy is a hereditary and chronic (lifelong) allergic skin disease. Signs usually begin between 6 months and 3 years of age, with some breeds of dog, such as the Golden Retriever showing signs at an earlier age. Dogs with atopic dermatitis are itchy, especially around the eyes, muzzle, ears and feet. In severe cases the irritation is generalised. If the allergens are seasonal, the signs of irritation are similarly seasonal. Many dogs with house dust mite allergy have perennial disease. Some of the allergens associated with atopy in dogs include pollens of trees, grasses and weeds, as well as molds and House dust mite. Ear and skin infections with the bacteria "Staphylococcus pseudintermedius" and the yeast "Malassezia pachydermatis" are common secondary to atopic dermatitis.
Food allergy can be associated with identical signs and some authorities consider food allergy to be a type of atopic dermatitis.
Diagnosis of atopic dermatitis is by elimination of other causes of irritation including fleas, scabies and other parasites such as Cheyletiella and lice. Food allergy can be identified through the use of elimination diet trials in which a novel or hydrolysed protein diet is used for a minimum of 6 weeks and allergies to aeroallergens can be identified using intradermal allergy testing and/or blood testing (allergen-specific IgE ELISA).
Treatment includes avoidance of the offending allergens if possible, but for most dogs this is not practical or effective. Other treatments modulate the adverse immune response to allergens and include antihistamines, steroids, ciclosporin and immunotherapy (a process in which allergens are injected to try to induce tolerance). In many cases shampoos, medicated wipes and ear cleaners are needed to try to prevent the return of infections.
New research into T-cell receptor peptides and their effects on dogs with severe, advanced atopic dermatitis are being investigated.