Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Fusarium wilt is a common vascular wilt fungal disease, exhibiting symptoms similar to Verticillium wilt. The pathogen that causes Fusarium wilt is "Fusarium oxysporum" ("F. oxysporum"). The species is further divided into forma specialis based on host plant.
Bacterial wilt of turfgrass is the only known bacterial disease of turf. The causal agent is the Gram negative bacterium Xanthomonas campestris pv. graminis. The first case of bacterial wilt of turf was reported in a cultivar of creeping bentgrass known as Toronto or C-15, which is found throughout the midwestern United States. Until the causal agent was identified in 1984, the disease was referred to simply as C-15 decline. This disease is almost exclusively found on putting greens at golf courses where extensive mowing creates wounds in the grass which the pathogen uses in order to enter the host and cause disease.
Panama disease is a plant disease of the roots of banana plants. It is a type of Fusarium wilt, caused by the fungal pathogen "Fusarium oxysporum f. sp. cubense" (Foc). The pathogen is resistant to fungicide and cannot be controlled chemically.
During the 1950s, Panama disease wiped out most commercial Gros Michel banana production. The Gros Michel banana was the dominant cultivar of bananas, and the blight inflicted enormous costs and forced producers to switch to other, disease-resistant cultivars. New strains of Panama disease currently threaten the production of today's most popular cultivar, Cavendish.
The foamy bark canker is a disease affecting oak trees in California caused by the fungus "Geosmithia pallida" and spread by the Western oak bark beetle ("Pseudopityopthorus pubipennis"). This disease is only seen through the symbiosis of the bark beetles and the fungal pathogen. The bark beetles target oak trees and bore holes through the peridermal tissues, making tunnels within the phloem. The fungal spores are brought into these tunnels by the beetles and begin to colonize the damaged cells inside the tunnels. Symptoms of the developing fungus include wet discoloration seeping from the beetle entry holes as the fungus begins to consume phloem and likely other tissues. If bark is removed, necrosis of the phloem can be observed surrounding the entry hole(s). As the disease progresses, a reddish sap and foamy liquid oozes from entry holes, thus giving the disease the name Foamy bark canker. Eventually after the disease has progressed, the tree dies. This disease is important because of its detrimental effects on oak trees and its ability to spread to several new Californian counties in just a couple years.
Sudden Death Syndrome (SDS) in Soybean plants quickly spread across the southern United States in the 1970s, eventually reaching most agricultural areas of the US. SDS is caused by a Fusarium fungi, more specifically the soil borne root pathogen "Fusarium virguliforme," formerly known as "Fusarium solani" f. sp. "glycines"."." Losses could exceed hundreds of millions of dollars in US soybean markets alone making it one of the most important diseases found in Soybeans across the US
Creeping bentgrass ("Agrostis stolonifera") and annual bluegrasses ("Poa annua") are the makeup of most putting greens, as well as the preferred hosts of this pathogen. Specifically, Toronto (C-15), Seaside, and Nemisilla are the cultivars of creeping bentgrass most commonly affected. The bacteria enter the plant host and interfere with water and nutrient flow, causing the plant to look drought stressed and to take on a blueish-purple color. Additionally, symptoms of bacterial wilt of turf grass include yellow leaf spots, tan or brown spots, water soaked lesions, elongated yellow leaves and shriveling of aforementioned blue or dark green leaves.Since putting greens are not a pure stand of turf, some grass blades may be resistant to the bacterium and thus remain unharmed while the surrounding turf dies, rendering the putting surface inconsistent and unsightly, especially at high-end golf courses.
"F. oxysporum" is a major wilt pathogen of many economically important crop plants. It is a soil-borne pathogen, which can live in the soil for long periods of time, so rotational cropping is not a useful control method. It can also spread through infected dead plant material, so cleaning up at the end of the season is important.
One control method is to improve soil conditions because "F. oxysporum" spreads faster through soils that have high moisture and bad drainage. Other control methods include planting resistant varieties, removing infected plant tissue to prevent overwintering of the disease, using soil and systemic fungicides to eradicate the disease from the soil, flood fallowing, and using clean seeds each year. Applying fungicides depends on the field environment. It is difficult to find a biological control method because research in a greenhouse can have different effects than testing in the field. The best control method found for "F. oxysporum" is planting resistant varieties, although not all have been bred for every forma specialis.
"F. oxysporum" f. sp. "batatas" can be controlled by using clean seed, cleaning up infected leaf and plant material and breeding for resistance. Fungicides can also be used, but are not as effective as the other two because of field conditions during application. Fungicides can be used effectively by dip treating propagation material.
Different races of "F. oxysporum" f. sp. "cubense", Panama disease on banana, can be susceptible, resistant and partially resistant. It can be controlled by breeding for resistance and through eradication and quarantine of the pathogen by improving soil conditions and using clean plant material. Biological control can work using antagonists. Systemic and soil fungicides can also be used.
The main control method for "F. oxysporum" f. sp. "lycopersici", vascular wilt on tomato, is resistance. Other effective control methods are fumigating the infected soil and raising the soil pH to 6.5-7.
The most effective way to control "F. oxysporum" f. sp. "melonis" is to graft a susceptible variety of melon to a resistant root-stock. Resistant cultivars, liming the soil to change soil pH to 6-7, and reducing soil nitrogen levels also help control "F. oxysporum" f. sp. "melonis".
The fungus "Trichoderma viride" is a proven biocontrol agent to control this disease in an environment friendly way.
Some redbay trees may be resistant to the disease, and future research will investigate factors associated with resistance, in the hope that tolerant varieties can be identified and developed.
Laurel wilt, also called laurel wilt disease, is a vascular disease caused by the fungus "Raffaelea lauricola", which is transmitted by the invasive redbay ambrosia beetle, "Xyleborus glabratus". The disease affects and kills members of the laurel family. The avocado is perhaps the most commercially valuable plant affected by laurel wilt.
Control of the beetle vector is the most effective management technique for disease prevention. Conventional methods of tree thinning and the use of insecticides have been used to combat the western bark beetles, but are only effective before the beetles have colonized and before the fungus has invaded the tree. Other cultural techniques of sanitation and overall health of the oak trees by keeping up with watering, fertilizer or mulch needs, and pruning may help. It is very important to diagnose foamy bark canker disease correctly and promptly in order to manage the disease properly because if a tree is already infected, the removal of the tree is the most effective way to prevent the disease from spreading.
Beet vascular necrosis and rot is a soft rot disease caused by the bacterium Pectobacterium carotovorum" subsp. "betavasculorum, which has also been known as "Pectobacterium betavasculorum" and "Erwinia carotovora" subsp. "betavasculorum". It was classified in the genus "Erwinia" until genetic evidence suggested that it belongs to its own group; however, the name Erwinia is still in use. As such, the disease is sometimes called Erwinia rot today. It is a very destructive disease that has been reported across the United States as well as in Egypt. Symptoms include wilting and black streaks on the leaves and petioles. It is usually not fatal to the plant, but in severe cases the beets will become hollowed and unmarketable. The bacteria is a generalist species which rots beets and other plants by secreting digestive enzymes that break down the cell wall and parenchyma tissues. The bacteria thrive in warm and wet conditions, but cannot survive long in fallow soil. However, it is able to persist for long periods of time in the rhizosphere of weeds and non-host crops. While it is difficult to eradicate, there are cultural practices that can be used to control the spread of the disease, such as avoiding injury to the plants and reducing or eliminating application of nitrogen fertilizer.
The best way to manage SDS is with a resistant variety. One issue is that most resistant varieties are only partially resistant so yield reductions may still occur. Another issue is that the plant needs resistance for SDS and SCN in order to gain true resistance because of their synergistic relationship and most varieties do not have resistance for both. Aside from resistance, the only other ways to control SDS are management practices.
These include:
- Avoid planting in cool, wet conditions
- Plant later when the soil has warmed up
- Try avoiding soil compaction as it creates wet spots in the soil that can increase plant stress and SDS infection rates
- Managing for SCN as this nematode often occurs alongside "F. virguliforme"
- Deep tillage to break up compaction and help the soil warm faster
One common management tactic used in other pathogen management plans is crop rotation. In some cases, disease severity can be reduced but most often it is not effective. This is because of chlamydospores and macroconidia as they can persist in soils for many years.
Fungicides are another common product used to control fungal pathogens. In-furrow applications and seed treatments with fungicides have some effect in decreasing disease instance but in most cases, the timing isn't right and the pathogen can still infect the plants. Foliar applications of fungicides have no effect on disease suppression for SDS because the fungi are found in the soil and mainly the roots of the plants. Most foliar fungicides do not move downward through plants, therefore having no effect on the pathogen.
Two external symptoms help characterize Panama disease of banana:
- Yellow leaf syndrome, the yellowing of the border of the leaves which eventually leads to bending of the petiole.
- Green leaf syndrome, which occurs in certain cultivars, marked by the persistence of the green color of the leaves followed by the bending of the petiole as in yellow leaf syndrome. Internally, the disease is characterized by vascular discoloration. This begins in the roots and rhizomes with a yellowing that proceeds to a red or brown color in the pseudostem.
These symptoms often get confused with the symptoms of bacterial wilt of banana, but there are ways to differentiate between the two diseases:
- Fusarium wilt proceeds from older to younger leaves, but bacterial wilt is the opposite.
- Fusarium wilt has no symptoms on the growing buds or suckers, no exudates visible within the plant, and no symptoms in the fruit. Bacterial wilt can be characterized by distorted or necrotic buds, bacterial ooze within the plant, and fruit rot and necrosis.
Once a banana plant is infected, it will continue to grow and any new leaves will be pale in color. Recovery is rare, but if it does occur any new emerging suckers will already be infected and can propagate disease if planted.
"Fusarium oxysporum f. sp. cubense" (Foc) is most prominent in banana and plantain, but some other similar relatives are also susceptible to infection. Different races of the disease are used to classify different major hosts affected by Foc. Race 1 was the initial outbreak which destroyed much of the world's Gros Michel bananas. Cavendish bananas are resistant to race 1, but tropical race 4 (or subtropical race 4) is the classification for Foc which affects Cavendish. Race 2 affects a cooking and dessert banana, Bluggoe.
The bacteria can survive in the rhizosphere of other crops such as tomato, carrots, sweet potato, radish, and squash as well as weed plants like lupin and pigweed, so it is very hard to get rid of it completely. When it is known that the bacterium is present in the soil, planting resistant varieties can be the best defense against the disease. Many available beet cultivars are resistant to "Pectobacterium carotovorum" subsp. "betavasculorum", and some examples are provided in the corresponding table. A comprehensive list is maintained by the USDA on the Germplasm Resources Information Network.
Even though some genes associated with root defense response have been identified, the specific mechanism of resistance is unknown, and it is currently being researched.
Snow mold is a type of fungus and a turf disease that damages or kills grass after snow melts, typically in late winter. Its damage is usually concentrated in circles three to twelve inches in diameter, although yards may have many of these circles, sometimes to the point at which it becomes hard to differentiate between different circles. Snow mold comes in two varieties: pink or gray. While it can affect all types of grasses, Kentucky bluegrass and fescue lawns are least affected by snow mold.
Verticillium wilt is a wilt disease of over 350 species of eudicot plants caused by six species of Verticillium genus, "V. dahliae", "V. albo-atrum", "V. longisporum", V. nubilum, V. theobromae and
V. tricorpus. (See, for example, Barbara, D.J. & Clewes, E. (2003). "Plant pathogenic Verticillium species: how many of them are there?" Molecular Plant Pathology 4(4).297-305. Blackwell Publishing.) Many economically important plants are susceptible including cotton, tomatoes, potatoes, oilseed rape, eggplants, peppers and ornamentals, as well as others in natural vegetation communities. Many eudicot species and cultivars are resistant to the disease and all monocots, gymnosperms and ferns are immune.
Symptoms are superficially similar to "Fusarium" wilts. There is no chemical control for the disease but crop rotation, the use of resistant varieties and deep plowing may be useful in reducing the spread and impact of the disease.
"Verticillium" wilt begins as a mild, local infection, which over a few years will grow in strength as more virile strains of the fungus develop. If left unchecked the disease will become so widespread that the crop will need to be replaced with resistant varieties, or a new crop will need to be planted altogether.
Control of "Verticilium" can be achieved by planting disease free plants in uncontaminated soil, planting resistant varieties, and refraining from planting susceptible crops in areas that have been used repeatedly for solanaceous crops. Soil fumigation can also be used, but is generally too expensive over large areas.
In tomato plants, the presence of ethylene during the initial stages of infection inhibits disease development, while in later stages of disease development the same hormone will cause greater wilt. Tomato plants are available that have been engineered with resistant genes that will tolerate the fungus while showing significantly lower signs of wilting.
"Verticillium albo-altrum", "Verticilium dahliae" and "V. longisporum" can overwinter as melanized mycelium or microsclerotia within live vegetation or plant debris. As a result, it can be important to clear plant debris to lower the spread of disease. "Verticilium dahliae" and "V. longisporum" are able to survive as microsclerotia in soil for up to 15 years.
Susceptible tomato seedlings inoculated with arbuscular mycorrhizal fungi and "Trichoderma Harzianum" show increased resistance towards "Verticillium" wilt.
Gray snow mold ("Typhula" spp. or Typhula blight) is the less damaging form of snow mold. While its damage may appear widespread, it typically does little damage to the grass itself, only to the blades. Unlike most plant pathogens, it is able to survive throughout hot summer months as sclerotia under the ground or in plant debris. Typhula blight is commonly found in United States in the Great Lakes region and anywhere with cold winter temperatures and persistent snow fall.
Infants may develop respiratory symptoms as a result of exposure to a specific type of fungal mold, called Penicillium. Signs that an infant may have mold-related respiratory problems include (but are not limited to) a persistent cough and/or wheeze. Increased exposure increases the probability of developing respiratory symptoms during their first year of life. Studies have shown that a correlation exists between the probability of developing asthma and increased exposure to "Penicillium". The levels are deemed ‘no mold’ to ‘low level’ , from ‘low’ to ‘intermediate’ , and from ‘intermediate’ to ‘high’.
Mold exposures have a variety of health effects depending on the person. Some people are more sensitive to mold than others. Exposure to mold can cause a number of health issues such as; throat irritation, nasal stuffiness, eye irritation, cough and wheezing, as well as skin irritation in some cases. Exposure to mold may also cause heightened sensitivity depending on the time and nature of exposure. People at higher risk for mold allergies are people with chronic lung illnesses, which will result in more severe reactions when exposed to mold.
There has been sufficient evidence that damp indoor environments are correlated with upper respiratory tract symptoms such as coughing, and wheezing in people with asthma.
Dutch elm disease (DED) is caused by a member of the sac fungi (Ascomycota) affecting elm trees, and is spread by elm bark beetles. Although believed to be originally native to Asia, the disease was accidentally introduced into America and Europe, where it has devastated native populations of elms that did not have resistance to the disease. It has also reached New Zealand. The name "Dutch elm disease" refers to its identification in 1921 and later in the Netherlands by Dutch phytopathologists Bea Schwarz and Christine Buisman who both worked with Professor Johanna Westerdijk. The disease affects species in the genera "Ulmus" and "Zelkova", therefore it is not specific to the Dutch elm hybrid.
The causative agents of DED are ascomycete microfungi. Three species are now recognized:
- "Ophiostoma ulmi", which afflicted Europe from 1910, reaching North America on imported timber in 1928.
- "Ophiostoma himal-ulmi", a species endemic to the western Himalaya.
- "Ophiostoma novo-ulmi", an extremely virulent species from Japan which was first described in Europe and North America in the 1940s and has devastated elms in both continents since the late 1960s.
DED is spread in North America by three species of bark beetles (Family: Curculionidae, Subfamily: Scolytinae):
- The native elm bark beetle, "Hylurgopinus rufipes".
- The European elm bark beetle, "Scolytus multistriatus".
- The banded elm bark beetle, "Scolytus schevyrewi".
In Europe, while "S. multistriatus" still acts as a vector for infection, it is much less effective than the large elm bark beetle, "S. scolytus". "H. rufipes" can be a vector for the disease, but is inefficient compared to the other vectors. "S. schevyrewi" was found in 2003 in Colorado and Utah.
Other reported DED vectors include "Scolytus sulcifrons", "S. pygmaeus", "S. laevis", "Pteleobius vittatus" and "Р. kraatzi". Other elm bark beetle species are also likely vectors.
Mold health issues are potentially harmful effects of molds.
Molds (US usage; British English "moulds") are ubiquitous in the biosphere, and mold spores are a common component of household and workplace dust. The United States Centers for Disease Control and Prevention reported in its June 2006 report, 'Mold Prevention Strategies and Possible Health Effects in the Aftermath of Hurricanes and Major Floods,' that "excessive exposure to mold-contaminated materials can cause adverse health effects in susceptible persons regardless of the type of mold or the extent of contamination." When mold spores are present in abnormally high quantities, they can present especially hazardous health risks to humans after prolonged exposure, including allergic reactions or poisoning by mycotoxins, or causing fungal infection (mycosis).
It has been observed in spiny lobsters ("Panulirus ornatus") in Vietnam, where it is caused by a species of "Fusarium".
It has been observed in shrimp, where the agent is microscopic protozoan "Hyalophysa chattoni" or a close relative, in Galveston Bay, Texas and other locations.
With extra care taken to the health of the shrimp, it is possible to prevent cases of black gill disease. The water should have 10-20 parts per thousand parts salinity and filtered.
Physiological plant disorders are caused by non-pathological conditions such as poor light, adverse weather, water-logging, phytotoxic compounds or a lack of nutrients, and affect the functioning of the plant system. Physiological disorders are distinguished from plant diseases caused by pathogens, such as a virus or fungus. While the symptoms of physiological disorders may appear disease-like, they can usually be prevented by altering environmental conditions. However, once a plant shows symptoms of a physiological disorder it is likely that that season’s growth or yield will be reduced.