Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Harlequin syndrome is not debilitating so treatment is not normally necessary. In cases where the individual may feel socially embarrassed, contralateral sympathectomy may be considered, although compensatory flushing and sweating of other parts of the body may occur. In contralateral sympathectomy, the nerve bundles that cause the flushing in the face are interrupted. This procedure causes both sides of the face to no longer flush or sweat. Since symptoms of Harlequin syndrome do not typically impair a person’s daily life, this treatment is only recommended if a person is very uncomfortable with the flushing and sweating associated with the syndrome.
Froin's syndrome – coexistence of xanthochromia, high protein level and marked coagulation of cerebrospinal fluid (CSF). It is caused by meningeal irritation (e.g. during spinal meningitis) and CSF flow blockage by tumour mass or abscess. Stagnation of the CSF within the thecal sac facilitates exudation from the tumour itself and activation of coagulation factors. A clinical test formerly used for evaluation of spinal stenosis is Queckenstedt's maneuver. Nowadays, a magnetic resonance imaging is used for identification of CSF flow obstruction. It often shows the prolongation of T1 and T2 signal in CSF caudal to a level of block. This phenomenon is named after Georges Froin (1874–1932), a French physician who first described it.
One possible cause of Harlequin syndrome is a lesion to the preganglionic or postganglionic cervical sympathetic fibers and parasympathetic neurons of the ciliary ganglion. It is also believed that torsion (twisting) of the thoracic spine can cause blockage of the anterior radicular artery leading to Harlequin syndrome. The sympathetic deficit on the denervated side causes the flushing of the opposite side to appear more pronounced. It is unclear whether or not the response of the undamaged side was normal or excessive, but it is believed that it could be a result of the body attempting to compensate for the damaged side and maintain homeostasis.
Since the cause and mechanism of Harlequin syndrome is still unknown, there is no way to prevent this syndrome.
In the United States, sarcoidosis has a prevalence of approximately 10 cases per 100,000 whites and 36 cases per 100,000 blacks. Heerfordt syndrome is present in 4.1–5.6% of those with sarcoidosis.
Roberts syndrome is an extremely rare condition that only affects about 150 reported individuals. Although there have been only about 150 reported cases, the affected group is quite diverse and spread worldwide. Parental consanguinity (parents are closely related) is common with this genetic disorder. The frequency of Roberts syndrome carriers is unknown.
The prognosis varies widely from case to case, depending on the severity of the symptoms. However, almost all people reported with Aicardi syndrome to date have experienced developmental delay of a significant degree, typically resulting in mild to moderate to profound intellectual disability. The age range of the individuals reported with Aicardi syndrome is from birth to the mid 40s.
There is no cure for this syndrome.
Respiratory complications are often cause of death in early infancy.
Muir–Torre was observed to occur in 14 of 50 families (28%) and in 14 of 152 individuals (9.2%) with Lynch syndrome, also known as HNPCC.
The 2 major MMR proteins involved are hMLH1 and hMSH2. Approximately 70% of tumors associated with the MTS have microsatellite instability. While germline disruption of hMLH1 and hMSH2 is evenly distributed in HNPCC, disruption of hMSH2 is seen in greater than 90% of MTS patients.
Gastrointestinal and genitourinary cancers are the most common internal malignancies. Colorectal cancer is the most common visceral neoplasm in Muir–Torre syndrome patients.
As there is no known cure, Loeys–Dietz syndrome is a lifelong condition. Due to the high risk of death from aortic aneurysm rupture, patients should be followed closely to monitor aneurysm formation, which can then be corrected with interventional radiology or vascular surgery.
Previous research in laboratory mice has suggested that the angiotensin II receptor antagonist losartan, which appears to block TGF-beta activity, can slow or halt the formation of aortic aneurysms in Marfan syndrome. A large clinical trial sponsored by the National Institutes of Health is currently underway to explore the use of losartan to prevent aneurysms in Marfan syndrome patients. Both Marfan syndrome and Loeys–Dietz syndrome are associated with increased TGF-beta signaling in the vessel wall. Therefore, losartan also holds promise for the treatment of Loeys–Dietz syndrome. In those patients in which losartan is not halting the growth of the aorta, irbesartan has been shown to work and is currently also being studied and prescribed for some patients with this condition.
If an increased heart rate is present, atenolol is sometimes prescribed to reduce the heart rate to prevent any extra pressure on the tissue of the aorta. Likewise, strenuous physical activity is discouraged in patients, especially weight lifting and contact sports.
Worldwide prevalence of Aicardi Syndrome is estimated at several thousand, with approximately 900 cases reported in the United States.
Several genetic causes of Loeys–Dietz syndrome have been identified. A "de novo" mutation in TGFB3, a ligand of the TGF ß pathway, was identified in an individual with a syndrome presenting partially overlapping symptoms with Marfan Syndrome and Loeys-Dietz Syndrome.
The first gene that could cause the syndrome is described recently and is called NF1X (chromosome 19: 19p13.1).
In terms of treatment/management one should observe what signs or symptoms are present and therefore treat those as there is no other current guideline. The affected individual should be monitored for cancer of:
- Thyroid
- Breast
- Renal
Nevo Syndrome is considered to be a rare disorder. Since its first appearance in 1974, only a handful of cases have been reported. Studies have shown showing similarities between Nevo Syndrome with Ehlers-Danlos syndrome as well as Sotos syndrome. There is an astounding overlap of phenotypic manifestations between Nevo Syndrome and the more frequent Sotos syndrome, which are both caused by the NSD1 deletion. Sotos syndrome is an autosomal dominant condition associated with learning disabilities, a distinctive facial appearance, and overgrowth. Studies have shown an overwhelming occurrence (half of those involved in the study) of Nevo syndrome in those individuals of Middle-Eastern descent.
It is not possible to make a generalised prognosis for development due to the variability of causes, as mentioned above, the differing types of symptoms and cause. Each case must be considered individually.
The prognosis for children with idiopathic West syndrome are mostly more positive than for those with the cryptogenic or symptomatic forms. Idiopathic cases are less likely to show signs of developmental problems before the attacks begin, the attacks can often be treated more easily and effectively and there is a lower relapse rate. Children with this form of the syndrome are less likely to go on to develop other forms of epilepsy; around two in every five children develop at the same rate as healthy children.
In other cases, however, treatment of West syndrome is relatively difficult and the results of therapy often dissatisfying; for children with symptomatic and cryptogenic West syndrome, the prognosis is generally not positive, especially when they prove resistant to therapy.
Statistically, 5 out of every 100 children with West syndrome do not survive beyond five years of age, in some cases due to the cause of the syndrome, in others for reasons related to their medication. Only less than half of all children can become entirely free from attacks with the help of medication. Statistics show that treatment produces a satisfactory result in around three out of ten cases, with only one in every 25 children's cognitive and motoric development developing more or less normally.
A large proportion (up to 90%) of children suffer severe physical and cognitive impairments, even when treatment for the attacks is successful. This is not usually because of the epileptic fits, but rather because of the causes behind them (cerebral anomalies or their location or degree of severity). Severe, frequent attacks can (further) damage the brain.
Permanent damage often associated with West syndrome in the literature include cognitive disabilities, learning difficulties and behavioural problems, cerebral palsy (up to 5 out of 10 children), psychological disorders and often autism (in around 3 out of 10 children). Once more, the cause of each individual case of West syndrome must be considered when debating cause and effect.
As many as 6 out of 10 children with West syndrome suffer from epilepsy later in life. Sometimes West syndrome turns into a focal or other generalised epilepsy. Around half of all children develop Lennox-Gastaut syndrome.
The RASopathies are developmental syndromes caused by germline mutations (or in rare cases by somatic mosaicism) in genes that alter the Ras subfamily and mitogen-activated protein kinases that control signal transduction, including:
- Capillary malformation-AV malformation syndrome
- Autoimmune lymphoproliferative syndrome
- Cardiofaciocutaneous syndrome
- Hereditary gingival fibromatosis type 1
- Neurofibromatosis type 1
- Noonan syndrome
- Costello syndrome, Noonan-like
- Legius syndrome, Noonan-like
- Noonan syndrome with multiple lentigines, formerly called LEOPARD syndrome, Noonan-like
A syndrome is a set of medical signs and symptoms occurring together, constitutes a particular disease or disorder. The word derives from the Greek σύνδρομον, meaning "concurrence". In some instances, a syndrome is so closely linked with a pathogenesis or cause that the words "syndrome", "disease", and "disorder" end up being used interchangeably for them. This is especially true of inherited syndromes. For example, Down syndrome, Wolf–Hirschhorn syndrome, and Andersen syndrome are disorders with known pathogeneses, so each is more than just a set of signs and symptoms, despite the "syndrome" nomenclature. In other instances, a syndrome is not specific to only one disease. For example, toxic shock syndrome can be caused by various toxins; premotor syndrome can be caused by various brain lesions; and premenstrual syndrome is not a disease but simply a set of symptoms.
If an underlying genetic cause is suspected but not known, a condition may be referred to as a genetic association (often just "association" in context). By definition, an association indicates that the collection of signs and symptoms occurs in combination more frequently than would be likely by chance alone.
Syndromes are often named after the physician or group of physicians that discovered them or initially described the full clinical picture. Such eponymous syndrome names are examples of medical eponyms. Recently, there has been a shift towards naming conditions descriptively (by symptoms or underlying cause) rather than eponymously, but the eponymous syndrome names often persist in common usage.
Overgrowth syndromes in children constitute a group of rare disorders that are typical of tissue hypertrophy. Individual overgrowth syndromes have been shown to overlap with regard to clinical and radiologic features. The details of the genetic bases of these syndromes are unfolding. Any of the three embryonic tissue layers may be involved.The syndromes may manifest in localized or generalized tissue overgrowth. Latitudinal and longitudinal growth may be affected. Nevertheless, the musculoskeletal features are central to the diagnosis of some syndromes such as Proteus syndrome. The time of presentation of children with overgrowth syndromes is an important contributor to the differential diagnosis. Children with some overgrowth syndromes such as Klippel-Trenaunay-Weber syndrome can be readily detectable at birth. In contrast other overgrowth syndromes such as Proteus syndrome usually present in the postnatal period characteristically between the 2nd and 3rd year of life. In general, children with overgrowth syndromes are at increased risk of embryonic tumor development.
Examples of overgrowth syndromes include; Beckwith-Wiedemann syndrome, Proteus syndrome, Sotos syndrome, neurofibromatosis, Simpson-Golabi-Behmel syndrome, Weaver syndrome, Sturge–Weber syndrome, Macrocephaly-capillary malformation, CLOVES syndrome, fragile X syndrome and Klippel-Trenaunay-Weber syndrome.
Schimmelpenning syndrome appears to be sporadic rather than inherited, in almost all cases. It is thought to result from genetic mosaicism, possibly an autosomal dominant mutation arising after conception and present only in a subpopulation of cells. The earlier in embryological development such a mutation occurs, the more extensive the nevi are likely to be and the greater the likelihood of other organ system involvement.
The genetics of the Bannayan–Riley–Ruvalcaba syndrome is determined, in the majority of cases, via the PTEN gene which presents about 30 mutations in this condition. This gene which regulates cell growth, when "not" working properly can lead to hamartomas. PTEN chromosomal location is 10q23.31, while the molecular location is 87,863,438 to 87,971,930 There are many syndromes that are linked to PTEN aside from Bannayan–Riley–Ruvalcaba Syndrome.
The syndrome combines Bannayan–Zonana syndrome, Riley–Smith syndrome, and Ruvalcaba–Myhre–Smith syndrome. Bannayan–Zonana syndrome is named for George A. Bannayan and Jonathan Zonana
Nevo Syndrome is an autosomal recessive disorder. Most times in which a child is afflicted with Nevo Syndrome, both their parents are of average height and weight. It is only until after birth when the characteristic physical traits associated with disease are manifested, and the disorder is actually diagnosed. One study showed that despite the increased growth rates, the patient was completely healthy up until age 6, when he was admitted into the hospital. Nevo syndrome is usually associated with early childhood fatality. Children with Nevo Syndrome have a high occurrence of death due to cardiac arrest because their developing hearts cannot keep up with their overgrown body.
Pashayan syndrome also known as Pashayan–Prozansky Syndrome, and blepharo-naso-facial syndrome is a rare syndrome. Facial abnormalities characterise this syndrome as well as malformation of extremities. Specific characteristics would be a bulky, flattened nose, where the face has a mask like appearance and the ears are also malformed.
A subset of Pashayan syndrome has also been described, known as "cerebrofacioarticular syndrome", "Van Maldergem syndrome'" or "Van Maldergem–Wetzburger–Verloes syndrome". Similar symptoms are noted in these cases as in Pashayan syndrome.
Roberts syndrome, or sometimes called "pseudothalidomide syndrome", is an extremely rare genetic disorder that is characterized by mild to severe prenatal retardation or disruption of cell division, leading to malformation of the bones in the skull, face, arms, and legs.
Roberts syndrome is also known by many other names, including: hypomelia-hypotrichosis-facial hemangioma syndrome, SC syndrome (once thought to be an entirely separate disease), pseudothalidomide syndrome, Roberts-SC phocomelia syndrome, SC phocomelia syndrome, Appelt-Gerken-Lenz syndrome, RBS, SC pseudothalidomide syndrome, and tetraphocomelia-cleft palate syndrome. It is a genetic disorder caused by the mutation of the ESCO2 gene on 8th chromosome. Named after the famous Philadelphia surgeon and physician, Dr. John Bingham Roberts (1852–1924), who first described the syndrome in 1919, it is one of the rarest autosomal recessive disorders, affecting approximately 150 known individuals.
The syndrome is both autosomal, in that there are equal numbers of copies of the gene in both males and females, and recessive, meaning the child must inherit the defective gene from both parents. The mutation causes cell division to occur slowly or unevenly, and the cells with abnormal genetic content die. Roberts syndrome can affect both males and females. Although the disorder is rare, the affected group is diverse. The mortality rate is high in severely affected individuals.
More than 80% of children with Patau syndrome die within the first year of life. Children with the mosaic variation are usually affected to a lesser extent. In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively.
Spanish researchers reported the development of a Costello mouse, with the G12V mutation, in early 2008. Although the G12V mutation is rare among children with Costello syndrome, and the G12V mouse does not appear to develop tumors as expected, information about the mouse model's heart may be transferrable to humans.
Italian and Japanese researchers published their development of a Costello zebrafish in late 2008, also with the G12V mutation. The advent of animal models may accelerate identification of treatment options.