Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
When a person speaks, the vocal cords create vibrations ("vocal fremitus") in the tracheobronchial tree and through the lungs and chest wall, where they can be felt ("tactile fremitus"). This is usually assessed with the healthcare provider placing the flat of their palms on the chest wall and then asking a patient to repeat a diphthong such as "blue balloons" or "toys for tots" (the original diphthong used was the German word Neunundneunzig but the translation to the English 'ninety nine' was not a diphthong and thus not as effective in eliciting fremitus). An increase in tactile fremitus indicates denser or inflamed lung tissue, which can be caused by diseases such as pneumonia. A decrease suggests air or fluid in the pleural spaces or a decrease in lung tissue density, which can be caused by diseases such as chronic obstructive pulmonary disease or asthma.
Hepatic fremitus is a vibration felt over the person's liver. It is thought to be caused by a severely inflamed and necrotic liver rubbing up against the peritoneum. The name 'Monash sign' has been suggested for this clinical sign, after the Monash Medical Centre in Melbourne, Australia.
A pulmonary consolidation is a region of (normally compressible) lung tissue that has filled with liquid, a condition marked by induration (swelling or hardening of normally soft tissue) of a normally aerated lung. It is considered a radiologic sign. Consolidation occurs through accumulation of inflammatory cellular exudate in the alveoli and adjoining ducts. Simply, it is defined as alveolar space that contains liquid instead of gas. The liquid can be pulmonary edema, inflammatory exudate, pus, inhaled water, or blood (from bronchial tree or hemorrhage from a pulmonary artery). It must be present to diagnose pneumonia: the signs of lobar pneumonia are characteristic and clinically referred to as consolidation.
Signs that consolidation may have occurred include:
- Expansion of the thorax on inspiration is reduced on the affected side
- Vocal fremitus is increased on the side with consolidation
- Percussion is dull in affected area
- Breath sounds are bronchial
- Possible medium, late, or pan-inspiratory crackles
- Vocal resonance is increased. Here, the patient's voice (or whisper, as in whispered pectoriloquy) can be heard more clearly when there is consolidation, as opposed to in the healthy lung where speech sounds muffled.
- A pleural rub may be present.
- A lower expected Pa02 than calculated in the alveolar gas equation
When a pleural effusion has been determined to be exudative, additional evaluation is needed to determine its cause, and amylase, glucose, pH and cell counts should be measured.
- Red blood cell counts are elevated in cases of bloody effusions (for example after heart surgery or hemothorax from incomplete evacuation of blood).
- Amylase levels are elevated in cases of esophageal rupture, pancreatic pleural effusion, or cancer.
- Glucose is decreased with cancer, bacterial infections, or rheumatoid pleuritis.
- pH is low in empyema (<7.2) and may be low in cancer.
- If cancer is suspected, the pleural fluid is sent for cytology. If cytology is negative, and cancer is still suspected, either a thoracoscopy, or needle biopsy of the pleura may be performed.
- Gram staining and culture should also be done.
- If tuberculosis is possible, examination for "Mycobacterium tuberculosis" (either a Ziehl–Neelsen or Kinyoun stain, and mycobacterial cultures) should be done. A polymerase chain reaction for tuberculous DNA may be done, or adenosine deaminase or interferon gamma levels may also be checked.
The most common causes of exudative pleural effusions are bacterial pneumonia, cancer (with lung cancer, breast cancer, and lymphoma causing approximately 75% of all malignant pleural effusions), viral infection, and pulmonary embolism.
Another common cause is after heart surgery, when incompletely drained blood can lead to an inflammatory response that causes exudative pleural fluid.
Conditions associated with exudative pleural effusions:
- Parapneumonic effusion due to pneumonia
- Malignancy (either lung cancer or metastases to the pleura from elsewhere)
- Infection (empyema due to bacterial pneumonia)
- Trauma
- Pulmonary infarction
- Pulmonary embolism
- Autoimmune disorders
- Pancreatitis
- Ruptured esophagus (Boerhaave's syndrome)
- Rheumatoid pleurisy
- Drug-induced lupus
The most common causes of transudative pleural effusions in the United States are heart failure and cirrhosis. Nephrotic syndrome, leading to the loss of large amounts of albumin in urine and resultant low albumin levels in the blood and reduced colloid osmotic pressure, is another less common cause of pleural effusion. Pulmonary emboli were once thought to cause transudative effusions, but have been recently shown to be exudative.
The mechanism for the exudative pleural effusion in pulmonary thromboembolism is probably related to increased permeability of the capillaries in the lung, which results from the release of cytokines or inflammatory mediators (e.g. vascular endothelial growth factor) from the platelet-rich blood clots. The excessive interstitial lung fluid traverses the visceral pleura and accumulates in the pleural space.
Conditions associated with transudative pleural effusions include:
- Congestive heart failure
- Liver cirrhosis
- Severe hypoalbuminemia
- Nephrotic syndrome
- Acute atelectasis
- Myxedema
- Peritoneal dialysis
- Meigs' syndrome
- Obstructive uropathy
- End-stage kidney disease
The annual age-adjusted incidence rate (AAIR) of PSP is thought to be three to six times as high in males as in females. Fishman cites AAIR's of 7.4 and 1.2 cases per 100,000 person-years in males and females, respectively. Significantly above-average height is also associated with increased risk of PSP – in people who are at least 76 inches (1.93 meters) tall, the AAIR is about 200 cases per 100,000 person-years. Slim build also seems to increase the risk of PSP.
The risk of contracting a first spontaneous pneumothorax is elevated among male and female smokers by factors of approximately 22 and 9, respectively, compared to matched non-smokers of the same sex. Individuals who smoke at higher intensity are at higher risk, with a "greater-than-linear" effect; men who smoke 10 cigarettes per day have an approximate 20-fold increased risk over comparable non-smokers, while smokers consuming 20 cigarettes per day show an estimated 100-fold increase in risk.
In secondary spontaneous pneumothorax, the estimated annual AAIR is 6.3 and 2.0 cases per 100,000 person-years for males and females, respectively, with the risk of recurrence depending on the presence and severity of any underlying lung disease. Once a second episode has occurred, there is a high likelihood of subsequent further episodes. The incidence in children has not been well studied, but is estimated to be between 5 and 10 cases per 100,000 person-years.
Death from pneumothorax is very uncommon (except in tension pneumothoraces). British statistics show an annual mortality rate of 1.26 and 0.62 deaths per million person-years in men and women, respectively. A significantly increased risk of death is seen in older victims and in those with secondary pneumothoraces.
Secondary spontaneous pneumothorax occurs in the setting of a variety of lung diseases. The most common is chronic obstructive pulmonary disease (COPD), which accounts for approximately 70% of cases. Known lung diseases that may significantly increase the risk for pneumothorax are
In children, additional causes include measles, echinococcosis, inhalation of a foreign body, and certain congenital malformations (congenital cystic adenomatoid malformation and congenital lobar emphysema).
11.5% of people with a spontaneous pneumothorax have a family member who has previously experienced a pneumothorax. The hereditary conditions – Marfan syndrome, homocystinuria, Ehlers–Danlos syndrome, alpha 1-antitrypsin deficiency (which leads to emphysema), and Birt–Hogg–Dubé syndrome—have all been linked to familial pneumothorax. Generally, these conditions cause other signs and symptoms as well, and pneumothorax is not usually the primary finding. Birt–Hogg–Dubé syndrome is caused by mutations in the "FLCN" gene (located at chromosome 17p11.2), which encodes a protein named folliculin. "FLCN" mutations and lung lesions have also been identified in familial cases of pneumothorax where other features of Birt–Hogg–Dubé syndrome are absent. In addition to the genetic associations, the HLA haplotype AB is also a genetic predisposition to PSP.
CAP is common worldwide, and a major cause of death in all age groups. In children, most deaths (over two million a year) occur in newborn period. According to a World Health Organization estimate, one in three newborn deaths are from pneumonia. Mortality decreases with age until late adulthood, with the elderly at risk for CAP and its associated mortality.
More CAP cases occur during the winter than at other times of the year. CAP is more common in males than females, and more common in black people than Caucasians. Patients with underlying illnesses (such as Alzheimer's disease, cystic fibrosis, COPD, tobacco smoking, alcoholism or immune-system problems) have an increased risk of developing pneumonia.
Steroids are the mainstay of treatment for rheumatoid arthritis, and have been shown to improve rheumatoid pleuritis. This would seem to be an outdated view of the treatment for this disease. More modern methods form the mainstay of treatment today. (no references?)
Some CAP patients require intensive care, with clinical prediction rules such as the pneumonia severity index and CURB-65 guiding the decision to hospitalize. Factors increasing the need for hospitalization include:
- Age greater than 65
- Underlying chronic illnesses
- Respiratory rate greater than 30 per minute
- Systolic blood pressure less than 90 mmHg
- Heart rate greater than 125 per minute
- Temperature below 35 or over 40 °C
- Confusion
- Evidence of infection outside the lung
Laboratory results indicating hospitalization include:
- Arterial oxygen tension less than 60 mm Hg
- Carbon dioxide over 50 mmHg or pH under 7.35 while breathing room air
- Hematocrit under 30 percent
- Creatinine over 1.2 mg/dl or blood urea nitrogen over 20 mg/dl
- White-blood-cell count under 4 × 10^9/L or over 30 × 10^9/L
- Neutrophil count under 1 x 10^9/L
X-ray findings indicating hospitalization include:
- Involvement of more than one lobe of the lung
- Presence of a cavity
- Pleural effusion
Light microscopy reveals replacement of normal cells lining the pleura (mesothelial cells) by a layer of pseudostratified epithelioid cells, multinucleated giant macrophages, and necrotic material (Mandl et al., 1969; Lillington et al. 1971)
Teeth are constantly subject to both horizontal and vertical occlusal forces. With the center of rotation of the tooth acting as a fulcrum, the surface of bone adjacent to the pressured side of the tooth will undergo resorption and disappear, while the surface of bone adjacent to the tensioned side of the tooth will undergo apposition and increase in volume.
In both primary and secondary occlusal trauma, tooth mobility might develop over time, with it occurring earlier and being more prevalent in secondary occlusal trauma. To treat mobility due to primary occlusal trauma, the cause of the trauma must be eliminated. Likewise for teeth subject to secondary occlusal trauma, though these teeth may also require splinting together to the adjacent teeth so as to eliminate their mobility.
In primary occlusal trauma, the cause of the mobility was the excessive force being applied to a tooth with a normal attachment apparatus, otherwise known as a "periodontally-uninvolved tooth". The approach should be to eliminate the cause of the pain and mobility by determining the causes and removing them; the mobile tooth or teeth will soon cease exhibiting mobility. This could involve removing a high spot on a recently restored tooth, or even a high spot on a non-recently restored tooth that perhaps moved into hyperocclusion. It could also involve altering one's parafunctional habits, such as refraining from chewing on pens or biting one's fingernails. For a bruxer, treatment of the patient's primary occlusal trauma could involve selective grinding of certain interarch tooth contacts or perhaps employing a nightguard to protect the teeth from the greater than normal occlusal forces of the patient's parafunctional habit. For someone who is missing enough teeth in non-strategic positions so that the remaining teeth are forced to endure a greater "per square inch" occlusal force, treatment might include restoration with either a removable prosthesis or implant-supported crown or bridge.
In secondary occlusal trauma, simply removing the "high spots" or selective grinding of the teeth will not eliminate the problem, because the teeth are already periodontally involved. After splinting the teeth to eliminate the mobility, the cause of the mobility (in other words, the loss of clinical attachment and bone) must be managed; this is achieved through surgical periodontal procedures such as soft tissue and bone grafts, as well as restoration of edentulous areas. As with primary occlusal trauma, treatment may include either a removable prosthesis or implant-supported crown or bridge.
Certain drugs, including both prescribed and recreational drugs are thought by some to cause the development of bruxism, however others argue that there is insufficient evidence to draw such a conclusion. Examples may include dopamine agonists, dopamine antagonists, tricyclic antidepressants, selective serotonin reuptake inhibitors, alcohol, cocaine, and amphetamines (including those taken for medical reasons). In some reported cases where bruxism is thought to have been initiated by selective serotonin reuptake inhibitors, decreasing the dose resolved the side effect. Other sources state that reports of selective serotonin reuptake inhibitors causing bruxism are rare, or only occur with long-term use.
Specific examples include levodopa (when used in the long term, as in Parkinson's disease), fluoxetine, metoclopramide, lithium, cocaine, venlafaxine, citalopram, fluvoxamine, methylenedioxyamphetamine (MDA), methylphenidate (used in attention deficit hyperactive disorder), and gamma-hydroxybutyric acid (GHB) and similar gamma-aminobutyric acid-inducing analogues such as phenibut. Bruxism can also be exacerbated by excessive consumption of caffeine, as in coffee, tea or chocolate. Bruxism has also been reported to occur commonly comorbid with drug addiction. Methylenedioxymethamphetamine (MDMA, ecstasy) has been reported to be associated with bruxism, which occurs immediately after taking the drug and for several days afterwards. Tooth wear in people who take ecstasy is also frequently much more severe than in people with bruxism not associated with ecstasy.
Secondary occlusal trauma occurs when "normal or excessive occlusal forces" are placed on teeth with "compromised periodontal attachment", thus contributing harm to an already damaged system. As stated, secondary occlusal trauma occurs when there is a compromised periodontal attachment and, thus, a "pre-existing periodontal condition".
Some research suggests that there may be a degree of inherited susceptibility to develop sleep bruxism. 21–50% of people with sleep bruxism have a direct family member who had sleep bruxism during childhood, suggesting that there are genetic factors involved, although no genetic markers have yet been identified. Offspring of people who have sleep bruxism are more likely to also have sleep bruxism than children of people who do not have bruxism, or people with awake bruxism rather than sleep bruxism.