Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Pulmonary aspiration of acidic material (such as stomach acid) may produce an immediate primary injury caused by the chemical reaction of acid with lung parenchyma, and a later secondary injury as a result of the subsequent inflammatory response.
Risk factors for pulmonary aspiration include conditions which depress the level of consciousness (such as traumatic brain injury, alcohol intoxication, drug overdose, and general anesthesia). A decreased gag reflex, upper esophageal sphincter and lower esophageal sphincter tone, gastroesophageal reflux, full stomach, as well as obesity, stroke, and pregnancy can all increase the risk of aspiration in the semiconscious. Tracheal intubation or presence of a gastric tube (for example, a feeding tube) may also increase the risk.
In one study, peanuts were the most common obstruction. In addition to peanuts, hot dogs, and grapes, latex balloons are also a serious choking hazard in children that can result in death. A latex balloon will conform to the shape of the trachea, blocking the airway and making it difficult to expel with the Heimlich maneuver.
Choking is the fourth most common cause of unintentional injury-related death in the US. Many episodes are not reported because they are brief and resolve without seeking medical attention. Among reported events, the majority of episodes (80%) occur among children younger than age 15, with fewer episodes (20%) among age 15 and older. The death rate from choking is low at most ages but increases starting around age 74. Choking due to a foreign object resulted in 162,000 deaths (2.5 per 100,000) in 2013, compared to 140,000 deaths (2.9 per 100,000) in 1990.
Foreign body aspiration occurs when a foreign body enters the airways and causes choking. A foreign body in the bronchi usually causes a cough.
Choking is caused by an object from outside the body, also called a foreign body, blocking the airway. The object can block the upper or lower airway passages. The airway obstruction is usually partial but can also be complete.
Among children, the most common causes of choking are food, coins, toys, and balloons. In one study, peanuts were the most common object found in the airway of children evaluated for suspected foreign body aspiration. Foods that pose a high risk of choking include hot dogs, hard candy, nuts, seeds, whole grapes, raw carrots, apples, popcorn, peanut butter, marshmallows, chewing gum, and sausages. The most common cause of choking death in children is latex balloons. Small, round non-food objects such as balls, marbles, toys, and toy parts are also associated with a high risk of choking death because of their potential to completely block a child's airway.
Children younger than age three are especially at risk of choking because they explore the environment by putting objects in their mouth. Also, young children are still developing the ability to chew food completely. Molar teeth, which come in around 1.5 years of age, are necessary for grinding food. Even after molar teeth are present, children continue developing the ability to chew food completely and swallow throughout early childhood. In addition, a child's airway is smaller in diameter than an adult's airway, which means that smaller objects can cause an airway obstruction in children. Infants and young children generate a less forceful cough than adults, so coughing may not be as effective in relieving an airway obstruction. Finally, children with neuromuscular disorders, developmental delay, traumatic brain injury, and other conditions that affect swallowing are at an increased risk of choking.
In adults, choking often involves food blocking the airway. Risk factors include using alcohol or sedatives, undergoing a procedure involving the oral cavity or pharynx, wearing oral appliances, or having a medical condition that causes difficulty swallowing or impairs the cough reflex. Conditions that can cause difficulty swallowing and/or impaired coughing include neurologic conditions such as strokes, Alzheimer disease, or Parkinson disease. In older adults, risk factors also include living alone, wearing dentures, and having difficulty swallowing.
Children and adults with neurologic, cognitive, or psychiatric disorders may experience a delay in diagnosis because there may not be a known history of a foreign body entering the airway.
The risk may be reduced by administering a non-particulate antacid (e.g. Sodium Citrate) or an H-antagonist like Ranitidine.
Fire breather’s pneumonia is caused by the entrance of hydrocarbon fuels into the bronchial tree, usually due to accidental aspiration or inhalation during a fire performance show. Fire breathing, or fire blowing, is the act of creating a plume of fire by blowing a mouthful of fuel in a fine mist (atomization) over a source of ignition. Fire eating, or fire swallowing, is the act of putting a flaming object into the mouth and extinguishing it.
In both disciplines, the performer holds their breath until the air is clear of vapors, so as to not inhale the hazardous fumes. However, improper technique or an accident can lead to ingestion, inhalation, or aspiration of fine droplets or vapors. Fire breathing and fire eating are separate acts, but the terms are sometimes erroneously used interchangeably in the literature.
Fuel ingestion can also occur due to siphoning by mouth of fuel products.
Once inhaled, these fuels induce an inflammatory reaction in lung tissue. They are not metabolized by tissue enzymes, but undergo emulsification and become engulfed by macrophages which, with time, may disintegrate and release oily substances surrounded by fibrous tissue and giant cells.
Fire breathing is typically performed with a high flash point fuel, such as lamp oil (liquid paraffin), while fire eating is performed with low flash point fuels, such as white gas or naphtha. Highly purified fuels are preferred by fire performers due to their minimized toxicity, but other, more dangerous fuels may sometimes be used, such as ethanol, isopropanol, kerosene, gasoline, or charcoal lighter fluid. All fuels run the risk of causing pneumonitis if inhaled, however longer chain oils are more persistent than smaller molecules. Alcohols and volatile naphthas are likely to be absorbed or expelled from the body by evaporation and respiration.
Whether aspiration pneumonia represents a true bacterial infection or a chemical inflammatory process remains the subject of significant controversy. Both causes may be present with similar symptoms.
Historically it is said that a patient is at risk if they have:
- Residual gastric volume of greater than 25ml, with
- pH of less than 2.5
However these are indirect measurements and are not factors that directly influence aspiration risk.
Patients with a high risk should have a rapid sequence induction. High risk is defined as these factors:
1. Non-elective surgical procedure
2. Light anaesthesia/unexpected response to stimulation
3. Acute or chronic, upper or lower GI pathology
4. Obesity
5. Opioid medication
6. Neurological disease, impaired conscious level, or sedation
7. Lithotomy position
8. Difficult intubation/airway
9. Gastrointestinal reflux
10. Hiatal hernia
Sources of such lipids could be either exogenous or endogenous.
Exogenous: from outside the body. For example, inhaled nose drops with an oil base, or accidental inhalation of cosmetic oil. Amiodarone is an anti-arrythmic known to cause this condition. Oil pulling has also been shown to be a cause. At risk populations include the elderly, developmentally delayed or persons with gastroesophageal reflux. Switching to water-soluble alternatives may be helpful in some situations.
Endogenous: from the body itself, for example, when an airway is obstructed, it is often the case that distal to the obstruction, lipid-laden macrophages (foamy macrophages) and giant cells fill the lumen of the disconnected airspace.
Airway obstruction may cause obstructive pneumonitis or post-obstructive pneumonitis.
Aspiration pneumonia is often caused by a defective swallowing mechanism, often due to a neurological disease or as the result of an injury that directly impairs swallowing or interferes with consciousness. Examples of the former are stroke, Parkinson's disease, and multiple sclerosis, and examples of the latter are some types of dementia, seizures, intoxication, and general anaesthesia. For many types of surgical operations, patients are therefore instructed to take nothing by mouth (nil per os, abbreviated as NPO) for at least four hours before surgery.
Causes of upper airway obstruction include foreign body aspiration, blunt laryngotracheal trauma, penetrating laryngotracheal trauma, tonsillar hypertrophy, paralysis of the vocal cord or vocal fold, acute laryngotracheitis such as viral croup, bacterial tracheitis, epiglottitis, peritonsillar abscess, pertussis, retropharyngeal abscess, spasmodic croup. In basic and advanced life support airway obstructions are often referred to as "A-problems". Management of airways relies on both minimal-invasive and invasive techniques.
Endogenous lipoid pneumonia and non-specific interstitial pneumonitis has been seen prior to the development of pulmonary alveolar proteinosis in a child.
"Fire-eater's lung" is an important variant of hydrocarbon pneumonitis, which typically involves adolescents or young adults who are exposed through mishap during flame-blowing performances using a variety of different flammable materials. The substances used overlap with some of the pediatric exposures (kerosene, gasoline) but can also include other hydrocarbons such as jet fuel and, in France, an aromatic hydrocarbon enriched petroleum-distillate called "kerdan". There has also been a case of citronella oil aspiration in a fire-eater. As with hydrocarbon pneumonitis in children, fire-eater's lung can also be complicated by pneumatocele. Although the term "acute lipoid pneumonia" has been used to refer to the "fire-eater's lung" syndrome, this is a misnomer.
Conditions which commonly involve hemoptysis include bronchitis and pneumonia, lung cancers and tuberculosis. Other possible underlying causes include aspergilloma, bronchiectasis, coccidioidomycosis, pulmonary embolism, pneumonic plague, and cystic fibrosis. Rarer causes include hereditary hemorrhagic telangiectasia (HHT or Rendu-Osler-Weber syndrome), Goodpasture's syndrome, and granulomatosis with polyangiitis. In children, hemoptysis is commonly caused by the presence of a foreign body in the airway. The condition can also result from over-anticoagulation from treatment by drugs such as warfarin.
Blood-laced mucus from the sinus or nose area can sometimes be misidentified as symptomatic of hemoptysis (such secretions can be a sign of nasal or sinus cancer, but also a sinus infection). Extensive non-respiratory injury can also cause one to cough up blood. Cardiac causes like congestive heart failure and mitral stenosis should be ruled out.
The origin of blood can be identified by observing its color. Bright-red, foamy blood comes from the respiratory tract, whereas dark-red, coffee-colored blood comes from the gastrointestinal tract. Sometimes hemoptysis may be rust-colored.
The most common cause of minor hemoptysis is bronchitis.
- Lung cancer, including both non-small cell lung carcinoma and small cell lung carcinoma.
- Sarcoidosis
- Aspergilloma
- Tuberculosis
- Histoplasmosis
- Pneumonia
- Pulmonary edema
- Pulmonary embolism
- Foreign body aspiration and aspiration pneumonia
- Goodpasture's syndrome
- Granulomatosis with polyangiitis
- Eosinophilic granulomatosis with polyangiitis (Churg-Strauss syndrome)
- Bronchitis
- Bronchiectasis
- Pulmonary embolism
- Anticoagulant use
- Trauma
- Lung abscess
- Mitral stenosis
- Tropical eosinophilia
- Bleeding disorders
- Hughes-Stovin Syndrome and other variants of Behçet's disease
- Squamous Cell Carcinoma Of Esophagus
Hydrocarbon pneumonitis is a kind of chemical pneumonitis which occurs with oral ingestion of hydrocarbons and associated aspiration. It occurs prominently among children, accounting for many hospital admissions each year. Common hydrocarbons involved are mineral spirits, mineral seal oil (common in furniture polish), lamp oil, kerosene (paraffin), turpentine (pine oil), gasoline, and lighter fluid. Pneumatocele is a complication of hydrocarbon pneumonitis. In both childhood and adult pneumonitis, hydrocarbon aspiration occurs at the time of initial ingestion event or subsequently with vomiting. Low viscosity of an ingested hydrocarbon is considered a major factor promoting aspiration (presumably for mechanical reasons). Contrary to aspiration hydrocarbon pneumonitis, hydrocarbon (solvent) vapor inhalation manifests primarily in either central nervous system or cardiac effects.
The mortality rate of meconium-stained infants is considerably higher than that of non-stained infants; meconium aspiration used to account for a significant proportion of neonatal deaths. Residual lung problems are rare but include symptomatic cough, wheezing, and persistent hyperinflation for up to five to ten years. The ultimate prognosis depends on the extent of CNS injury from asphyxia and the presence of associated problems such as pulmonary hypertension. Fifty percent of newborns affected by meconium aspiration would die fifteen years ago; however, today the percent has dropped to about twenty.
Hemoptysis is the coughing up of blood or blood-stained mucus from the bronchi, larynx, trachea, or lungs. This can occur with lung cancer, infections such as tuberculosis, bronchitis, or pneumonia, and certain cardiovascular conditions. Hemoptysis is considered massive at . In such cases, there are always severe injuries. The primary danger comes from choking, rather than blood loss.
In a study conducted between 1995 and 2002, MAS occurred in 1,061 of 2,490,862 live births, reflecting an incidence of 0.43 of 1,000. MAS requiring intubation occurs at higher rates in pregnancies beyond 40 weeks. 34% of all MAS cases born after 40 weeks required intubation compared to 16% prior to 40 weeks.
Tuberculosis, pneumonia, inhaled foreign bodies, allergic bronchopulmonary aspergillosis and bronchial tumours are the major acquired causes of bronchiectasis. Infective causes associated with bronchiectasis include infections caused by the Staphylococcus, Klebsiella, or Bordetella pertussis, the causative agent of whooping cough and nontuberculous mycobacteria.
Aspiration of ammonia and other toxic gases, pulmonary aspiration, alcoholism, heroin (drug use), various allergies all appear to be linked to the development of bronchiectasis.
Various immunological and lifestyle factors have also been linked to the development of bronchiectasis:
- Childhood Acquired Immune Deficiency Syndrome (AIDS), which predisposes patients to a variety of pulmonary ailments, such as pneumonia and other opportunistic infections.
- Inflammatory bowel disease, especially ulcerative colitis. It can occur in Crohn's disease as well, but does so less frequently. Bronchiectasis in this situation usually stems from various allergic responses to inhaled fungal spores. A Hiatal hernia can cause Bronchiectasis when the stomach acid that is aspirated into the lungs causes tissue damage.
- People with rheumatoid arthritis who smoke appear to have a tenfold increased rate of the disease. Still, it is unclear as to whether or not cigarette smoke is a specific primary cause of bronchiectasis.
- Case reports of Hashimoto's thyroiditis and bronchiectasis occurring in the same persons have been published.
No cause is identified in up to 50% of non-cystic-fibrosis related bronchiectasis.
Chewing: Horses may develop choke if they do not chew their food properly. Therefore, horses with dental problems (e.g. acquired or congenital malocclusion, loose or missing teeth, or excessively sharp dental ridges) that do not allow them to completely grind their food are particularly at risk. In addition, horses that bolt their feed and do not take the time to chew properly are more likely to suffer from choke.
Dry Food: Dry foods may cause choke, especially if the horse does not have free access to water, or if the horse has other risk factors linked to choking. While pelleted or cubed feeds in general fall in this category, horse owners sometimes express particular concerns about beet pulp. However, while horses have choked on beet pulp, a university study did not document that beet pulp is a particular problem. It is believed that choke related to beet pulp is linked to the particle size and the horse's aggressive feeding behaviour, rather than the actual feed itself. Research suggests that horses that bolt their feed without sufficient chewing, or who do not have adequate access to water, are far more likely to choke, regardless of the type of feed, compared to horses that eat at a more leisurely rate. The risk of choke associated with any dry feed can be reduced by soaking the ration prior to feeding.
Foreign Objects: Horse may ingest non-edible materials such as pieces of wood. Cribbers may be more prone to this type of choke, if they happen to swallow a piece of wood or other material while cribbing.
In order to prevent bronchiectasis, children should be immunized against measles, pertussis, pneumonia, and other acute respiratory infections of childhood. While smoking has not been found to be a direct cause of bronchiectasis, it is certainly an irritant that all patients should avoid in order to prevent the development of infections (such as bronchitis) and further complications.
Treatments to slow down the progression of this chronic disease include keeping bronchial airways clear and secretions weakened through various forms of pneumotherapy. Aggressively treating bronchial infections with antibiotics to prevent the destructive cycle of infection, damage to bronchial tubes, and more infection is also standard treatment. Regular vaccination against pneumonia, influenza and pertussis are generally advised. A healthy body mass index and regular doctor visits may have beneficial effects on the prevention of progressing bronchiectasis. The presence of hypoxemia, hypercapnia, dyspnea level and radiographic extent can greatly affect the mortality rate from this disease.