Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Among US adults older than 55, 4% are taking medication and or supplements that put them at risk of a major drug interaction. Potential drug-drug interactions have increased over time and are more common in the low educated elderly even after controlling for age, sex, place of residence, and comorbidity.
A drug interaction is a situation in which a substance (usually another drug) affects the activity of a drug when both are administered together. This action can be synergistic (when the drug's effect is increased) or antagonistic (when the drug's effect is decreased) or a new effect can be produced that neither produces on its own. Typically, interactions between drugs come to mind (drug-drug interaction). However, interactions may also exist between drugs and foods (drug-food interactions), as well as drugs and medicinal plants or herbs (drug-plant interactions). People taking antidepressant drugs such as monoamine oxidase inhibitors should not take food containing tyramine as hypertensive crisis may occur (an example of a drug-food interaction). These interactions may occur out of accidental misuse or due to lack of knowledge about the active ingredients involved in the relevant substances.
It is therefore easy to see the importance of these pharmacological interactions in the practice of medicine. If a patient is taking two drugs and one of them increases the effect of the other it is possible that an overdose may occur. The interaction of the two drugs may also increase the risk that side effects will occur. On the other hand, if the action of a drug is reduced it may cease to have any therapeutic use because of under dosage. Notwithstanding the above, on occasion these interactions may be sought in order to obtain an improved therapeutic effect. Examples of this include the use of codeine with paracetamol to increase its analgesic effect. Or the combination of clavulanic acid with amoxicillin in order to overcome bacterial resistance to the antibiotic. It should also be remembered that there are interactions that, from a theoretical standpoint, may occur but in clinical practice have no important repercussions.
The pharmaceutical interactions that are of special interest to the practice of medicine are primarily those that have negative effects for an organism. The risk that a pharmacological interaction will appear increases as a function of the number of drugs administered to a patient at the same time. Over a third (36%) of older adults in the U.S. regularly use 5 or more medications or supplements and 15% are potentially at risk for a major drug-drug interaction. Both the use of medications and subsequent adverse drug interactions have increased significantly between 2005-2011.
It is possible that an interaction will occur between a drug and another substance present in the organism (i.e. foods or alcohol). Or in certain specific situations a drug may even react with itself, such as occurs with dehydration. In other situations, the interaction does not involve any effect on the drug. In certain cases, the presence of a drug in an individual's blood may affect certain types of laboratory analysis (analytical interference).
It is also possible for interactions to occur outside an organism before administration of the drugs has taken place. This can occur when two drugs are mixed, for example, in a saline solution prior to intravenous injection. Some classic examples of this type of interaction include that thiopentone and suxamethonium should not be placed in the same syringe and same is true for benzylpenicillin and heparin. These situations will all be discussed under the same heading due to their conceptual similarity.
Drug interactions may be the result of various processes. These processes may include alterations in the pharmacokinetics of the drug, such as alterations in the absorption, distribution, metabolism, and excretion (ADME) of a drug. Alternatively, drug interactions may be the result of the pharmacodynamic properties of the drug, e.g. the co-administration of a receptor antagonist and an agonist for the same receptor.
A study by the Agency for Healthcare Research and Quality (AHRQ) found that in 2011, sedatives and hypnotics were a leading source for adverse drug events seen in the hospital setting. Approximately 2.8% of all ADEs present on admission and 4.4% of ADEs that originated during a hospital stay were caused by a sedative or hypnotic drug. A second study by AHRQ found that in 2011, the most common specifically identified causes of adverse drug events that originated during hospital stays in the U.S. were steroids, antibiotics, opiates/narcotics, and anticoagulants. Patients treated in urban teaching hospitals had higher rates of ADEs involving antibiotics and opiates/narcotics compared to those treated in urban nonteaching hospitals. Those treated in private, nonprofit hospitals had higher rates of most ADE causes compared to patients treated in public or private, for-profit hospitals.
In the U.S., females had a higher rate of ADEs involving opiates and narcotics than males in 2011, while male patients had a higher rate of anticoagulant ADEs. Nearly 8 in 1,000 adults aged 65 years or older experienced one of the four most common ADEs (steroids, antibiotics, opiates/narcotics, and anticoagulants) during hospitalization. A study showed that 48% of patients had an adverse drug reaction to at least one drug, and pharmacist involvement helps to pick up adverse drug reactions.
In 2012 McKinsey &Co. concluded that the cost of the 35 million preventable adverse drug events would be as high as US$115 billion.
The mechanisms underlying most herb-drug interactions are not fully understood. Interactions between herbal medicines and anticancer drugs typically involve enzymes that metabolize cytochrome P450. For example, St. John's Wort has been shown to induce CYP3A4 and P-glycoprotein in vitro and in vivo.
As research better explains the biochemistry of drug use, fewer ADRs are Type B and more are Type A. Common mechanisms are:
- Abnormal pharmacokinetics due to
- genetic factors
- comorbid disease states
- Synergistic effects between either
- a drug and a disease
- two drugs
Examples of herb-drug interactions include, but are not limited to:
- St. John's wort affects the clearance of numerous drugs, including cyclosporin, SSRI antidepressants, digoxin, indinavir, and phenprocoumon. It may also interact with the anti-cancer drugs irinotecan and imatinib.
- Salvia miltiorrhiza may enhance anticoagulation and bleeding among people taking warfarin.
- Allium sativum has been found to decrease the plasma concentration of saquinavir, and may cause hypoglycemia when taken with chlorpropamide.
- Ginkgo biloba can cause bleeding when combined with warfarin or aspirin.
- Concomitant ephedra and caffeine use has been reported to, in rare cases, cause fatalities.
The overmedication of children has dramatically risen with those between the ages of 2 and 5 years old who are being prescribed atypical antipsychotics for bipolar disorders, developmental disabilities, ADHD, and behavior disorders. Drug companies have benefited considerably with profits made in sales for drugs such as stimulants for hyperactive children, with half a million children in the United States receiving medication. Children have become more involved with technology resulting in less play time outside and less time spent with parents. The long hours children spend with technology has impacted their attachment development, sensory and motor development, along with socialization skills, in return causing behavioral and psychological disorders and learning disabilities being diagnosed by psychotropic medication.
According to recent data from IMS health one of the leading services for data distribution in health care, 274,000 infants (0 to 1) are on anti-anxiety drugs, and 26,000 under a year old are on antidepressants. This is only a fraction of the millions of children 5 to 12 being prescribed these same drugs.
While these drugs can provide relief from some symptoms the children may suffer, psychiatric drugs have been shown in some instances to worsen the symptoms of mental illness and can cause adverse physical effects such as liver damage, weight gain, decreased cognitive function and dependency on the drug. (1) Antidepressants have side effects that can include suicidal thoughts and worsening depression. These medications can have long lasting effects on the children and these risks need to be taken into consideration.
It's important for parents to monitor their child's behavior and regulate their environment in order to help prevent any future affective disorders. Medication is often prescribed to these children however, it alone will not teach a child to create more valuable relationships at home or in the community. Other forms of intervention can be applied to supplement the effects of medication therapy and teach the child self-regulatory behaviors and healthy coping skills. The increase of psychiatric medication of children may be a result of the declining support for caregiving, leading to psychopathology in which drugs are oftentimes the go to method of treatment. Families do not always have knowledge regarding or the means to pursue other methods of intervention such as one-on-one therapy with the child, family therapy and parenting counseling that can teach effective parenting strategies to meet their child's specific needs. There is debate that healthcare professionals have been put under pressure to perform proficiently causing the influence of piecemeal polypharmacy.
Inhalation of an agonist for the beta-2 adrenergic receptor, such as Salbutamol, Albuterol (US), is the most common treatment for asthma. Polymorphisms of the beta-2 receptor play a role in tachyphylaxis. Expression of the Gly-16 allele (glycine at position 16) results in greater receptor downregulation by endogenous catecholamines at baseline compared to Arg-16. This results in a greater single-use bronchodilator response in individuals homozygous for Arg-16 compared to Gly-16 homozygotes. However, with regular beta-2 agonist use, asthmatic Arg-16 individuals experience a significant decline in bronchodilator response. This decline does not occur in Gly-16 individuals. It has been proposed that the tachyphylactic effect of regular exposure to exogenous beta-2 agonists is more apparent in Arg-16 individuals because their receptors have not been downregulated prior to agonist administration.
A related issue is overprescription, which occurs when doctors give prescription drugs to patients who do not need them. Antibiotics are a common example, as are narcotic painkillers. Aggressive marketing by drug companies is sometimes cited as a reason for overprescription.
DES (diethylstilbestrol) is a drug that mimics estrogen, a female hormone. From 1938 until 1971 doctors prescribed this drug to help some pregnant women who had had miscarriages or premature deliveries on the theory that miscarriages and premature births occurred because some pregnant women did not produce enough estrogen naturally to sustain the pregnancy for full term . An estimated 5-10 million pregnant women and the children born during this period were exposed to DES. Currently, DES is known to increase the risk of breast cancer, and cause a variety of birth-related adverse outcomes exposed female offsprings such as spontaneous abortion, second-trimester pregnancy loss, preterm delivery, stillbirth, neonatal death, sub/infertility and cancer of reproductive tissues . DES is an important developmental toxicant which links the fetal basis of adult disease.
In a patient fully withdrawn from opioids, going back to an intermittent schedule or maintenance dosing protocol, a fraction of the old tolerance level will rapidly develop, usually starting two days after therapy is resumed and, in general, leveling off after day 7. Whether this is caused directly by opioid receptors modified in the past or affecting a change in some metabolic set-point is unclear. Increasing the dose will usually restore efficacy; relatively rapid opioid rotation may also be of use if the increase in tolerance continues.
Methylmercury and inorganic mercury is excreted in human breast milk and infants are particularly susceptible to toxicity due to this compound. The fetus and infant are especially vulnerable to mercury exposures with special interest in the development of the CNS since it can easily cross across the placental barrier, accumulate within the placenta and fetus as the fetus cannot eliminate mercury and have a negative effect on the fetus even if the mother does not show symptoms. Mercury causes damage to the nervous system resulting from prenatal or early postnatal exposure and is very likely to be permanent.
The effect of grapefruit juice with regard to drug absorption was originally discovered in 1989. The first published report on grapefruit drug interactions was in 1991 in the Lancet entitled "Interactions of Citrus Juices with Felodipine and Nifedipine," and was the first reported food-drug interaction clinically. However, the effect only became well-publicized after being responsible for a number of bad interactions with medication.
The UK Food Standards Agency has recommended that pregnant women should limit their caffeine intake, out of prudence, to less than 200 mg of caffeine a day – the equivalent of two cups of instant coffee, or one and a half to two cups of fresh coffee. The American Congress of Obstetricians and Gynecologists (ACOG) concluded in 2010 that caffeine consumption is safe up to 200 mg per day in pregnant women. For women who breastfeed, are pregnant, or may become pregnant, Health Canada recommends a maximum daily caffeine intake of no more than 300 mg, or a little over two 8 oz (237 mL) cups of coffee.
The evidence for or against the importance of limiting caffeine intake during pregnancy is insufficient and of low quality. There are conflicting reports in the scientific literature about caffeine consumption during pregnancy. A 2011 risk analysis review found that caffeine consumption during pregnancy does not appear to increase the risk of congenital malformations, miscarriage or growth retardation even when consumed in moderate to high amounts. There is some evidence that the hormonal changes during pregnancy slow the metabolic clearance of caffeine from the system, causing a given dose to have longer-lasting effects (as long as 15 hours in the third trimester). There is some evidence that higher caffeine intake by pregnant women may be associated with a higher risk of giving birth to a low birth weight baby, and may be associated with a higher risk of pregnancy loss. A systematic review, analyzing the results of observational studies, suggests that women who consume large amounts of caffeine (greater than 300 mg/day) prior to becoming pregnant may have a higher risk of experiencing pregnancy loss.
Some fruit juices and fruits can interact with numerous drugs, in many cases causing adverse effects. The effect was first discovered by accident, when a test of drug interactions with alcohol used grapefruit juice to hide the taste of the ethanol.
It is still best-studied with grapefruit and grapefruit juice, but similar effects have more recently been seen with some (not all) other citrus fruits. One medical review advises patients to avoid all citrus juices until further research clarifies the risks. The interacting chemicals are found in many plants, and so many other foods may be affected; effects have been observed with apple juice, but their clinical significance is not yet known.
Normal amounts of food and drink, such as one whole grapefruit or a small glass () of grapefruit juice, can cause drug overdose toxicity. Fruit consumed three days before the medicine can still have an effect. The relative risks of different types of citrus fruit have not been systematically studied. Affected drugs typically have an auxiliary label saying “Do not take with grapefruit” on the container, and the interaction is elaborated on in the package insert. People are also advised to ask their physician or pharmacist about drug interactions.
The effects are caused by furanocoumarins (and, to a lesser extent, flavonoids). These chemicals inhibit key drug metabolizing enzymes, such as cytochrome P450 3A4 (CYP3A4). CYP3A4 is a metabolizing enzyme for almost 50% of drugs, and is found in the liver and small intestinal epithelial cells. As a result, many drugs are affected. Inhibition of enzymes can have two different effects, depending on whether the drug is either
1. metabolized by the enzyme to an inactive metabolite, "or"
2. activated by the enzyme to an active metabolite.
If the active drug is metabolized by the inhibited enzyme, then the fruit will stop the drug being metabolized, leaving elevated concentrations of the medication in the body, which can cause adverse effects. Conversely, if the medication is a prodrug, it needs to be metabolised to be converted to the active drug. Compromising its metabolism lowers concentrations of the active drug, reducing its therapeutic effect, and risking therapeutic failure.
Low drug concentrations can also be caused when the fruit suppresses drug absorption from the intestine.
Health Canada has not developed advice for adolescents because of insufficient data. However, they suggest that daily caffeine intake for this age group be no more than 2.5 mg/kg body weight. This is because the maximum adult caffeine dose may not be appropriate for light weight adolescents or for younger adolescents who are still growing. The daily dose of 2.5 mg/kg body weight would not cause adverse health effects in the majority of adolescent caffeine consumers. This is a conservative suggestion since older and heavier weight adolescents may be able to consume adult doses of caffeine without suffering adverse effects.
People who engage in polypharmacy and other hypochondriac behaviors are at an elevated risk of death from CDI. Elderly people are at the highest risk of CDI, because of having many age-related health problems requiring many medications combined with age-impaired judgment, leading to confusion in taking medications.
ADT tachyphylaxis specifically occurs in depressed patients using SSRIs and MAOIs. Currently, SSRIs are the preferred treatment for depression among clinicians, as MAOIs require the patient to avoid certain foods and other medications due to the potential for interactions capable of inducing dangerous side effects. Provided is a list of medications known to be subject to Poop-out.
A World Health Organization (WHO) report released April 2014 stated, "this serious threat is no longer a prediction for the future, it is happening right now in every region of the world and has the potential to affect anyone, of any age, in any country. Antibiotic resistance—when bacteria change so antibiotics no longer work in people who need them to treat infections—is now a major threat to public health."
Bacteria with resistance to antibiotics predate medical use of antibiotics by humans. However, widespread antibiotic use has made more bacteria resistant through the process of evolutionary pressure.
Reasons for the widespread use of antibiotics in human medicine include:
- increasing global availability over time since the 1950s
- uncontrolled sale in many low or middle income countries, where they can be obtained over the counter without a prescription, potentially resulting in antibiotics being used when not indicated. This may result in emergence of resistance in any remaining bacteria.
Other causes include:
- Antibiotic use in livestock feed at low doses for growth promotion is an accepted practice in many industrialized countries and is known to lead to increased levels of resistance.
- Releasing large quantities of antibiotics into the environment during pharmaceutical manufacturing through inadequate wastewater treatment increases the risk that antibiotic-resistant strains will develop and spread.
- It is uncertain whether antibacterials in soaps and other products contribute to antibiotic resistance, but antibacterial soaps are discouraged for other reasons.
Combined drug intoxication (CDI), also known as multiple drug intake (MDI) or lethal polydrug/polypharmacy intoxication, is an unnatural cause of human death. CDI is often confused with drug overdose, but it is a completely different phenomenon. It is distinct in that it is due to the simultaneous use of multiple drugs, whether the drugs are prescription, over-the-counter, recreational, or some other combination. Alcohol can exacerbate the symptoms and may directly contribute to increased severity of symptoms. The reasons for toxicity vary depending on the mixture of drugs. Usually, most victims die after using two or more drugs in combination that suppress breathing, and the low blood oxygen level causes brain death.
The CDI/MDI phenomenon seems to be becoming more common in recent years. In December 2007, according to Dr. John Mendelson, a pharmacologist at the California Pacific Medical Center Research Institute, deaths by combined drug intoxication were relatively "rare" ("one in several million"), though they appeared then to be "on the rise". In July 2008, the Associated Press and CNN reported on a medical study showing that over two decades, from 1983 to 2004, such deaths have soared. It has also become a prevalent risk for older patients.
Following a declination or total extinction in response to a previously therapeutic dose of an antidepressant, the issue is clinically addressed as stemming from tolerance development. Several strategies are available, such as exploring drug options from a different drug class used to treat depression. The patient can also choose to switch to another SSRI (or MAOI, if applicable) while maintaining proportionate dose. If tolerance develops in a drug from the same class, the clinician may recommend a regular cycle consisting of all effective treatments within the SSRI or MAOI classes, in order to minimize transitional side effects while maximizing therapeutic efficacy.
Other options include increasing dose of the same medication, or supplementation with another antidepressant. Dual reuptake inhibitors, also known as tricyclic antidepressants have been shown to have lower rates of tachyphylaxis.
While typical drug side effects reactions are mild to moderate; sometimes serious adverse effects occur.
As of 2016, the U.S. FDA recommended that "serious side effects associated with fluoroquinolone antibacterial drugs generally outweigh the benefits for patients with acute sinusitis, acute bronchitis, and uncomplicated urinary tract infections who have other treatment options. For patients with these conditions, fluoroquinolones should be reserved for those who do not have alternative treatment options."
Partly as a result of the efforts of Public Citizen, in 2008 the U.S. FDA ordered boxed warnings on all fluoroquinolones, advising consumers of an enhanced risk of tendon damage.
Prominent among these are side effects that became the subject of a black box warning by the U.S. FDA in 2016. The FDA wrote: "An FDA safety review has shown that fluoroquinolones when used systemically (i.e. tablets, capsules, and injectable) are associated with disabling and potentially permanent serious side effects that can occur together. These side effects can involve the tendons, muscles, joints, nerves, and central nervous system."
Quinolones are associated with a small risk of tendonitis and tendon rupture; a 2013 review found the incidence of tendon injury among those taking fluoroquinolones to be between 0.08 and 0.2%. The risk appears to be higher among people older than 60 and those also taking corticosteroids; there may also be higher risk among people who are male, have a pre-existing joint or tendon issue, have kidney disease, and are highly active. Some experts have advised avoidance of fluoroquinolones in athletes. If tendonitis occurs, it generally appears within one month, and the most common tendon that is injured appears to be the Achilles tendon. The cause is not well understood.
Nervous system effects include insomnia, restlessness, and rarely, seizure, convulsions, and psychosis. Other rare and serious adverse events have been observed with varying degrees of evidence for causation.
More generally, fluoroquinolones are tolerated, with typical drug side effects being mild to moderate. Common side effects include gastrointestinal effects such as nausea, vomiting, and diarrhea, as well as headache and insomnia. Postmarketing surveillance has revealed a variety of relatively rare but serious adverse effects that are associated with all members of the fluoroquinolone antibacterial class. Among these, tendon problems and exacerbation of the symptoms of the neurological disorder myasthenia gravis are the subject of "black box" warnings in the United States.
The overall rate of adverse events in patients treated with fluoroquinolones is roughly similar to that seen in patients treated with other antibiotic classes. A U.S. Centers for Disease Control and Prevention study found patients treated with fluoroquinolones experienced adverse events severe enough to lead to an emergency department visit more frequently than those treated with cephalosporins or macrolides, but less frequently than those treated with penicillins, clindamycin, sulfonamides, or vancomycin.
Fluoroquinolones prolong the heart's QT interval by blocking voltage-gated potassium channels. Prolongation of the QT interval can lead to torsades de pointes, a life-threatening arrhythmia, but in practice this appears relatively uncommon in part because the most widely prescribed fluoroquinolones (ciprofloxacin and levofloxacin) only minimally prolong the QT interval.
"Clostridium difficile" colitis may occur in connection with the use of any antibacterial drug, especially those with a broad spectrum of activity such as clindamycin, cephalosporins, and fluoroquinolones. Fluoroquinoline treatment is associated with risk that is similar to or less than that associated with broad spectrum cephalosporins. Fluoroquinoline administration may be associated with the acquisition and outgrowth of a particularly virulent "Clostridium" strain.
Events that may occur in acute overdose are rare, and include renal failure and seizure. Susceptible groups of patients, such as children and the elderly, are at greater risk of adverse reactions during therapeutic use.
In 2017 the FDA included the following important warning:
"The U.S. Food and Drug Administration (FDA) has required the drug labels and Medication Guides for all fluoroquinolone antibacterial drugs be updated to better describe the serious side effect of peripheral neuropathy. This serious nerve damage potentially caused by fluoroquinolones (see Table for a list) may occur soon after these drugs are taken and may be permanent.
The risk of peripheral neuropathy occurs only with fluoroquinolones that are taken by mouth or by injection. Approved fluoroquinolone drugs include levofloxacin (Levaquin), ciprofloxacin (Cipro), moxifloxacin (Avelox), norfloxacin (Noroxin), ofloxacin (Floxin), and gemifloxacin (Factive). The topical formulations of fluoroquinolones, applied to the ears or eyes, are not known to be associated with this risk.
If a patient develops symptoms of peripheral neuropathy, the fluoroquinolone should be stopped, and the patient should be switched to another, non-fluoroquinolone antibacterial drug, unless the benefit of continued treatment with a fluoroquinolone outweighs the risk. Peripheral neuropathy is a nerve disorder occurring in the arms or legs. Symptoms include pain, burning, tingling, numbness, weakness, or a change in sensation to light touch, pain or temperature, or the sense of body position. It can occur at any time during treatment with fluoroquinolones and can last for months to years after the drug is stopped or be permanent. Patients using fluoroquinolones who develop any symptoms of peripheral neuropathy should tell their health care professionals right away.
FDA will continue to evaluate the safety of drugs in the fluoroquinolone class and will communicate with the public again if additional information becomes available. "
More than 64,000 Americans died from drug overdoses in 2016. Since 2000, the US drug overdose death rate has gone from 6.2 per 100,000 persons in 2000 to 14.7 per 100,000 in 2014.
The National Center for Health Statistics report that 19,250 people died of accidental poisoning in the U.S. in the year 2004 (8 deaths per 100,000 population).
In 2008 testimony before a Senate subcommittee, Leonard J. Paulozzi, a medical epidemiologist at the Centers for Disease Control and Prevention stated that in 2005 more than 22,000 American lives were lost due to overdoses, and the number is growing rapidly. Paulozzi also testified that all available evidence suggests that unintentional overdose deaths are related to the increasing use of prescription drugs, especially opioid painkillers. However, the vast majority of overdoses are also attributable to alcohol. It is very rare for a victim of an overdose to have consumed just one drug. Most overdoses occur when drugs are ingested in combination with alcohol.
Drug overdose was the leading cause of injury death in 2013. Among people 25 to 64 years old, drug overdose caused more deaths than motor vehicle traffic crashes. There were 43,982 drug overdose deaths in the United States in 2013. Of these, 22,767 (51.8%) were related to prescription drugs.
The 22,767 deaths relating to prescription drug overdose in 2013, 16,235 (71.3%) involved opioid painkillers, and 6,973 (30.6%) involved benzodiazepines. Drug misuse and abuse caused about 2.5 million emergency department (ED) visits in 2011. Of these, more than 1.4 million ED visits were related to prescription drugs. Among those ED visits, 501,207 visits were related to anti-anxiety and insomnia medications, and 420,040 visits were related to opioid analgesics.
There are a number of factors that could potentially contribute to the development of feeding and eating disorders of infancy or early childhood. These factors include:
- Physiological – a chemical imbalance effecting the child's appetite could cause a feeding or eating disorder.
- Developmental – developmental abnormalities in oral-sensory, oral-motor, and swallowing can impact the child's eating ability and elicit a feeding or eating disorder.
- Environmental – simple issues such as inconsistent meal times can cause a feeding or eating disorder. Giving the child food that they are not developmentally acquired for can also cause these disorders. Family dysfunction and sociocultural issues could also play a role in feeding or eating disorders.
- Relational – when the child is not securely attached to the mother, it can cause feeding interactions to become disturbed or unnatural. Other factors, such as parental emotional unavailability and parental eating disorders, can cause feeding and eating disorders in their children.
- Psychological and behavioral – these factors include one involving the child's temperament. Characteristics such as being anxious, impulsive, distracted, or strong-willed personality types are ones that could affect the child's eating and cause a disorder. The individual could have learned to reject food due to a traumatic experience such as choking or being force fed.