Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Retinitis pigmentosa is the leading cause of inherited blindness, with approximately 1/4,000 individuals experiencing the non-syndromic form of their disease within their lifetime. It is estimated that 1.5 million people worldwide are currently affected. Early onset RP occurs within the first few years of life and is typically associated with syndromic disease forms, while late onset RP emerges from early to mid-adulthood.
Autosomal dominant and recessive forms of retinitis pigmentosa affect both male and female populations equally; however, the less frequent X-linked form of the disease affects male recipients of the X-linked mutation, while females usually remain unaffected carriers of the RP trait. The X-linked forms of the disease are considered severe, and typically lead to complete blindness during later stages. In rare occasions, a dominant form of the X-linked gene mutation will affect both males and females equally.
Due to the genetic inheritance patterns of RP, many isolate populations exhibit higher disease frequencies or increased prevalence of a specific RP mutation. Pre-existing or emerging mutations that contribute to rod photoreceptor degeneration in retinitis pigmentosa are passed down through familial lines; thus, allowing certain RP cases to be concentrated to specific geographical regions with an ancestral history of the disease. Several hereditary studies have been performed to determine the varying prevalence rates in Maine (USA), Birmingham (England), Switzerland (affects 1/7000), Denmark (affects 1/2500), and Norway. Navajo Indians display an elevated rate of RP inheritance as well, which is estimated as affecting 1 in 1878 individuals. Despite the increased frequency of RP within specific familial lines, the disease is considered non-discriminatory and tends to equally affect all world populations.
RP may be:
(1) Non-syndromic, that is, it occurs alone, without any other clinical findings,
(2) Syndromic, with other neurosensory disorders, developmental abnormalities, or complex clinical findings, or
(3) Secondary to other systemic diseases.
- RP combined with deafness (congenital or progressive) is called Usher syndrome.
- Alport's syndrome is associated with RP and an abnormal glomerular-basement membrane leading nephrotic syndrome and inherited as X-linked dominant.
- RP combined with ophthalmoplegia, dysphagia, ataxia, and cardiac conduction defects is seen in the mitochondrial DNA disorder Kearns-Sayre syndrome (also known as Ragged Red Fiber Myopathy)
- RP combined with retardation, peripheral neuropathy, acanthotic (spiked) RBCs, ataxia, steatorrhea, is absence of VLDL is seen in abetalipoproteinemia.
- RP is seen clinically in association with several other rare genetic disorders (including muscular dystrophy and chronic granulomatous disease) as part of McLeod syndrome. This is an X-linked recessive phenotype characterized by a complete absence of XK cell surface proteins, and therefore markedly reduced expression of all Kell red blood cell antigens. For transfusion purposes these patients are considered completely incompatible with all normal and K0/K0 donors.
- RP associated with hypogonadism, and developmental delay with an autosomal recessive inheritance pattern is seen with Bardet-Biedl syndrome
Other conditions include neurosyphilis, toxoplasmosis and Refsum's disease.
Retinitis is a genotypic disease which entails severe phenotypic representation. Types of Retinitis are currently considered the most complex forms of retinal disease. Such complexity in disease and incurability results from its complex mechanism. Retinitis is controlled by a single gene which can be inherited via an autosomal dominant, autosomal recessive, or X-linked gene. In many cases, individuals with Retinitis have parents and/or relatives who are unaffected by this disease.
This condition is linked to the X chromosome.
- Siberian Husky - Night blindness by two to four years old.
- Samoyed - More severe disease than the Husky.
Cytomegalovirus (a type of herpes virus) is what causes cytomegalovirus retinitis. Other types of herpes viruses include herpes simplex viruses and Epstein-Barr virus. Once an individual is infected with these viruses they stay in the body for life. What triggers the virus to reactivate are the following (though CMV can also be congenital).
- Leukemia
- AIDS
- Immunosuppressive chemotherapy
The incidence and prevalence of PMD are unknown, and no studies have yet investigated its prevalence or incidence. However, it is generally agreed that PMD is a very rare condition. Some uncertainty regarding the incidence of PMD may be attributed to its confusion with keratoconus. PMD is not linked to race or age, although most cases present early in life, between 20 and 40 years of age. While PMD is usually considered to affect men and women equally, some studies suggest that it may affect men more frequently.
Several diseases have been observed in patients with PMD. However, no causal relationships have been established between any of the associated diseases and the pathogenesis of PMD. Such diseases include: chronic open-angle glaucoma, retinitis pigmentosa, retinal lattice degeneration, scleroderma, kerato-conjunctivitis, eczema, and hyperthyroidism.
Commonly affected breeds:
- Akita - Symptoms at one to three years old and blindness at three to five years old. Selective breeding has greatly reduced the incidence of this disease in this breed.
- Miniature longhaired Dachshund - Symptoms at six months old.
- Papillon - Slowly progressive with blindness at seven to eight years old.
- Tibetan Spaniel - Symptoms at three to five years old.
- Tibetan Terrier - PRA3/RCD4 disease of middle age dogs. http://www.ttca-online.org/html/Petersen-Jones_PRA_article.pdf
- Samoyed - Symptoms by three to five years old.
Optic disc drusen are found clinically in about 1% of the population but this increases to 3.4% in individuals with a family history of ODD. About two thirds to three quarters of clinical cases are bilateral. A necropsy study of 737 cases showed a 2.4% incidence with 2 out of 15 (13%) bilateral, perhaps indicating the insidious nature of many cases. An autosomal dominant inheritance pattern with incomplete penetrance and associated inherited dysplasia of the optic disc and its blood supply is suspected. Males and females are affected at equal rates. Caucasians are the most susceptible ethnic group. Certain conditions have been associated with disc drusen such as retinitis pigmentosa, angioid streaks, Usher syndrome, Noonan syndrome and Alagille syndrome. Optic disc drusen are not related to Bruch membrane drusen of the retina which have been associated with age-related macular degeneration.
There are two types of retinitis: Retinitis pigmentosa (RP) and cytomegalovirus (CMV) retinitis. Both conditions result in the swelling and damage to the retinitis. However, the key difference in both these conditions is that Retinitis pigmentosa is a genetic eye disease that you inherit from one or both of your parents. On the other hand, CMV retinitis develops from a viral infection in the retina. Although there is no cure for this disease, there are steps you can take to protect your eyes from worsening. Supplements can slow the progression of the disease and alleviate symptoms temporarily. Research also shows that vitamin A, lutein, and omega-3 fatty acids also help alleviate symptoms.
Human cytomegalovirus (HCMV or CMV) is a DNA virus in the family "Herpesviridae" known for producing large cells with nuclear and cytoplasmic inclusions, CMV infects around 40% of the population worldwide.
Those areas infected by cytomegalovirus have cells evolve to necrosis, though inflammation within the retina is not great.
Rhegmatogenous retinal detachments can occur following the development of holes in areas of healed retinitis (retina may be atrophic). Proliferative vitreoretinopathy has been observed in cases of retinal detachment.
Choroideremia (; CHM) is a rare, X-linked recessive form of hereditary retinal degeneration that affects roughly 1 in 50,000 males. The disease causes a gradual loss of vision, starting with childhood night blindness, followed by peripheral vision loss, and progressing to loss of central vision later in life. Progression continues throughout the individual's life, but both the rate of change and the degree of visual loss are variable among those affected, even within the same family.
Choroideremia is caused by a loss-of-function mutation in the "CHM" gene which encodes Rab escort protein 1 (REP1), a protein involved in lipid modification of Rab proteins. While the complete mechanism of disease is not fully understood, the lack of a functional protein in the retina results in cell death and the gradual deterioration of the choroid, retinal pigment epithelium (RPE), and retinal photoreceptor cells.
As of 2017, there is no treatment for choroideremia; however, retinal gene therapy clinical trials have demonstrated a possible treatment.
Visual function declines as a result of the irregular corneal shape, resulting in astigmatism, and causing a distortion in vision. Deterioration can become severe over time.
Several mutations have been implicated as a cause of Oguchi disease. These include mutations in the arrestin gene or the rhodopsin kinase gene.
The condition is more frequent in individuals of Japanese ethnicity.
Patients with optic disc drusen should be monitored periodically for ophthalmoscopy, Snellen acuity, contrast sensitivity, color vision, intraocular pressure and threshold visual fields. For those with visual field defects optical coherence tomography has been recommended for follow up of nerve fiber layer thickness. Associated conditions such as angioid streaks and retinitis pigmentosa should be screened for. Both the severity of optic disc drusen and the degree of intraocular pressure elevation have been associated with visual field loss. There is no widely accepted treatment for ODD, although some clinicians will prescribe eye drops designed to decrease the intra-ocular pressure and theoretically relieve mechanical stress on fibers of the optic disc. Rarely choroidal neovascular membranes may develop adjacent to the optic disc threatening bleeding and retinal scarring. Laser treatment or photodynamic therapy or other evolving therapies may prevent this complication.
Since the "CHM" gene is located on the X chromosome, symptoms are seen almost exclusively in men. While there are a few exceptions, female carriers have a noticeable lack of pigmentation in the RPE but do not experience any symptoms. Female carriers have a 50% chance of having either an affected son or a carrier daughter, while a male with choroideremia will have all carrier daughters and unaffected sons.
Even though the disease progression can vary significantly, there are general trends. The first symptom many individuals with choroideremia notice is a significant loss of night vision, which begins in youth. Peripheral vision loss occurs gradually, starting as a ring of vision loss, and continuing on to "tunnel vision" in adulthood. Individuals with choroideremia tend to maintain good visual acuity into their 40s, but eventual lose all sight at some point in the 50-70 age range. A study of 115 individuals with choroideremia found that 84% of patients under the age of 60 had a visual acuity of 20/40 or better, while 33% of patients over 60 years old had a visual acuity of 20/200 or worse. The most severe visual acuity impairment (only being able to count fingers or worse) did not occur until the seventh decade of life. The same study found the rate of visual acuity loss to be about 1 eye chart row per 5 years.
Retinal degeneration is the deterioration of the retina caused by the progressive and eventual death of the cells of the retina. There are several reasons for retinal degeneration, including artery or vein occlusion, diabetic retinopathy, R.L.F./R.O.P. (retrolental fibroplasia/ retinopathy of prematurity), or disease (usually hereditary). These may present in many different ways such as impaired vision, night blindness, retinal detachment, light sensitivity, tunnel vision, and loss of peripheral vision to total loss of vision. Of the retinal degenerative diseases retinitis pigmentosa (RP) is a very important example.
Inherited retinal degenerative disorders in humans exhibit genetic and phenotypic heterogeneity in their underlying causes and clinical outcomes*. These retinopathies affect approximately one in 2000 individuals worldwide. A wide variety of causes have been attributed to retinal degeneration, such as disruption of genes that are involved in phototransduction, biosynthesis and folding of the rhodopsin molecule, and the structural support of the retina. Mutations in the rhodopsin gene account for 25% to 30% (30% to 40% according to) of all cases of autosomal dominant retinitis pigmentosa (adRP) in North America. There are many mechanisms of retinal degeneration attributed to rhodopsin mutations or mutations that involve or affect the function of rhodopsin. One mechanism of retinal degeneration is rhodopsin overexpression. Another mechanism, whereby a mutation caused a truncated rhodopsin, was found to affect rod function and increased the rate of photoreceptor degeneration.
- *For example, a single peripherin/RDS splice site mutation was identified as the cause of retinopathy in eight families; the phenotype in these families ranged from retinitis pigmentosa to macular degeneration.
This is a partial list of human eye diseases and disorders.
The World Health Organization publishes a classification of known diseases and injuries, the International Statistical Classification of Diseases and Related Health Problems, or ICD-10. This list uses that classification.
Oguchi disease, also called congenital stationary night blindness, Oguchi type 1 or Oguchi disease 1, is an autosomal recessive form of congenital stationary night blindness associated with fundus discoloration and abnormally slow dark adaptation.
The causes of macular edema are numerous and different causes may be inter-related.
- It is commonly associated with diabetes. Chronic or uncontrolled diabetes type 2 can affect peripheral blood vessels including those of the retina which may leak fluid, blood and occasionally fats into the retina causing it to swell.
- Age-related macular degeneration may cause macular edema. As individuals age there may be a natural deterioration in the macula which can lead to the depositing of drusen under the retina sometimes with the formation of abnormal blood vessels.
- Replacement of the lens as treatment for cataract can cause pseudophakic macular edema. (‘pseudophakia’ means ‘replacement lens’) also known as Irvine-Gass syndrome The surgery involved sometimes irritates the retina (and other parts of the eye) causing the capillaries in the retina to dilate and leak fluid into the retina. Less common today with modern lens replacement techniques.
- Chronic uveitis and intermediate uveitis can be a cause.
- Blockage of a vein in the retina can cause engorgement of the other retinal veins causing them to leak fluid under or into the retina. The blockage may be caused, among other things, by atherosclerosis, high blood pressure and glaucoma.
- A number of drugs can cause changes in the retina that can lead to macular edema. The effect of each drug is variable and some drugs have a lesser role in causation. The principal medication known to affect the retina are:- latanoprost, epinephrine, rosiglitazone, timolol and thiazolidinediones among others.
- A few congenital diseases are known to be associated with macular edema for example retinitis pigmentosa and retinoschisis.
ARN is associated with people who have latent herpes viruses that have been reactivated. The most common causes of the disease have been linked to VSV, HSV-1, HSV-2, and CMV respectively.
ARN cases have been reported in patients who have AIDS, are immunocompromised and in children. The disease is not limited to a specific gender. Most cases have been reported in young adults though children and the elderly can be affected.
Specific genetic markers in Caucasians in the United States have shown elevated risk for disease development (HLA-DQw7 and Bw62, DR4) as well as HLA-Aw33, B44, and DRw6 in the Japanese population.
DUSN may be caused by a helminthic infection with Toxocara canis, Baylisascaris procyonis, or Ancylostoma caninum. The characteristic lesions are believed to result from a single nematode migrating within the subretinal space. Although previously thought to be endemic in some areas, that belief was likely due to under awareness. DUSN has been diagnosed in patients in many countries and climates including America, Brazil, China and India.
Cystoid macular edema (CME) involves fluid accumulation in the outer plexiform layer secondary to abnormal perifoveal retinal capillary permeability. The edema is termed "cystoid" as it appears cystic; however, lacking an epithelial coating, it is not truly cystic. The cause for CME can be remembered with the mnemonic "DEPRIVEN" (diabetes, epinepherine, pars planitis, retinitis pigmentosa, Irvine-Gass syndrome, venous occlusion, E2-prostaglandin analogues, nicotinic acid/niacin).
Diabetic macular edema (DME) is similarly caused by leaking macular capillaries. DME is the most common cause of visual loss in both proliferative, and non-proliferative diabetic retinopathy.
The severity and prognosis vary with the type of mutation involved.
Coats' disease, (also known as exudative retinitis or retinal telangiectasis, sometimes spelled Coates' disease), is a rare congenital, nonhereditary eye disorder, causing full or partial blindness, characterized by abnormal development of blood vessels behind the retina. Coats' disease can also fall under glaucoma.
It can have a similar presentation to that of retinoblastoma.
Generally speaking, people diagnosed with photic retinopathy recover visual acuity completely within two months, though more severe cases may take longer, or not see complete recovery at all.