Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Pontiac fever is known to have a short incubation period of 1 to 3 days. No fatalities have been reported and cases resolve spontaneously without treatment. It is often not reported. Age, gender, and smoking do not seem to be risk factors. Pontiac fever seems to affect young people in the age medians of 29, 30, and 32. Pathogenesis of the Pontiac fever is poorly known.
Pontiac fever does not spread from person to person. It is acquired through aersolization of water droplets and/or potting soil containing "Legionella" bacteria.
The pathogenic agent is found everywhere except New Zealand. The bacterium is extremely sustainable and virulent: a single organism is able to cause an infection. The common source of infection is inhalation of contaminated dust, contact with contaminated milk, meat, or wool, and particularly birthing products. Ticks can transfer the pathogenic agent to other animals. Transfer between humans seems extremely rare and has so far been described in very few cases.
Some studies have shown more men to be affected than women, which may be attributed to different employment rates in typical professions.
“At risk” occupations include:
- Veterinary personnel
- Stockyard workers
- Farmers
- Sheep shearers
- Animal transporters
- Laboratory workers handling potentially infected veterinary samples or visiting abattoirs
- People who cull and process kangaroos
- Hide (tannery) workers
It is estimated that seven to ten million people are infected by leptospirosis annually. One million cases of severe leptospirosis occur annually, with 58,900 deaths. Annual rates of infection vary from 0.02 per 100,000 in temperate climates to 10 to 100 per 100,000 in tropical climates. This leads to a lower number of registered cases than likely exists.
The number of new cases of leptospirosis is difficult to estimate since many cases of the disease go unreported. There are many reasons for this, but the biggest issue is separating the disease from other similar conditions. Laboratory testing is lacking in many areas.
In context of global epidemiology, the socioeconomic status of many of the world’s population is closely tied to malnutrition; subsequent lack of micronutrients may lead to increased risk of infection and death due to leptospirosis infection. Micronutrients such as iron, calcium, and magnesium represent important areas of future research.
Outbreaks that occurred after the 1940's have happened mostly in the late summer seasons, which happens to be the driest part of the year. The people at the highest risk for leptospirosis are young people whose age ranges from 5-16 years old, and can also range to young adults.
The amount of cases increase during the rainy season in the tropics and during the late summer or early fall in Western countries. This happens because leptospires survive best in fresh water, damp alkaline soil, vegetation, and mud with temperatures higher that 22° C. This also leads to increased risk of exposure to populations during flood conditions, and leptospire concentrations to peak in isolated pools during drought. There is no evidence of leptospirosis having any effect on sexual and age-related differences. However, a major risk factor for development of the disease is occupational exposure, a disproportionate number of working-aged males are affected. There have been reported outbreaks where more than 40% of people are younger than 15. “Active surveillance measures have detected leptospire antibodies in as many as 30% of children in some urban American populations.” Potential reasons for such cases include children playing with suspected vectors such as dogs or indiscriminate contact with water.
Currently, no vaccine against relapsing fever is available, but research continues. Developing a vaccine is very difficult because the spirochetes avoid the immune response of the infected person (or animal) through antigenic variation. Essentially, the pathogen stays one step ahead of antibodies by changing its surface proteins. These surface proteins, lipoproteins called variable major proteins, have only 30–70% of their amino acid sequences in common, which is sufficient to create a new antigenic "identity" for the organism. Antibodies in the blood that are binding to and clearing spirochetes expressing the old proteins do not recognize spirochetes expressing the new ones. Antigenic variation is common among pathogenic organisms. These include the agents of malaria, gonorrhea, and sleeping sickness. Important questions about antigenic variation are also relevant for such research areas as developing a vaccine against HIV and predicting the next influenza pandemic.
While obviously preventable by staying away from rodents, otherwise hands and face should be washed after contact and any scratches both cleaned and antiseptics applied. The effect of chemoprophylaxis following rodent bites or scratches on the disease is unknown. No vaccines are available for these diseases.
Improved conditions to minimize rodent contact with humans are the best preventive measures. Animal handlers, laboratory workers, and sanitation and sewer workers must take special precautions against exposure. Wild rodents, dead or alive, should not be touched and pets must not be allowed to ingest rodents.
Those living in the inner cities where overcrowding and poor sanitation cause rodent problems are at risk from the disease. Half of all cases reported are children under 12 living in these conditions.
When proper treatment is provided for patients with rat-bite fever, the prognosis is positive. Without treatment, the infection usually resolves on its own, although it may take up to a year to do so. A particular strain of rat-bite fever in the United States can progress and cause serious complications that can be potentially fatal. Before antibiotics were used, many cases resulted in death. If left untreated, streptobacillary rat-bite fever can result in infection in the lining of the heart, covering over the spinal cord and brain, or in the lungs. Any tissue or organ throughout the body may develop an abscess.
Doxycycline has been provided once a week as a prophylaxis to minimize infections during outbreaks in endemic regions. However, there is no evidence that chemoprophylaxis is effective in containing outbreaks of leptospirosis, and use of antibiotics increases antibiotics resistance. Pre-exposure prophylaxis may be beneficial for individuals traveling to high-risk areas for a short stay.
Effective rat control and avoidance of urine contaminated water sources are essential preventive measures. Human vaccines are available only in a few countries, such as Cuba and China. Animal vaccines only cover a few strains of the bacteria. Dog vaccines are effective for at least one year.
Only 8% of infected horses have this form of pigeon fever, however, it has a 30-40% fatality rate. Organs that are commonly affected are the liver, spleen, and lungs. For a successful recovery, long-term antimicrobial therapy is essential.
They are usually spread by eating or drinking food or water contaminated with the feces of an infected person. They may occur when a person who prepares food is infected. Risk factors include poor sanitation as is found among poor crowded populations. Occasionally they may be transmitted by sex. Humans are the only animal infected.
Paratyphoid B is more frequent in Europe. It can present as a typhoid-like illness, as a severe gastroenteritis or with features of both. Herpes labialis, rare in true typhoid fever, is frequently seen in paratyphoid B. Diagnosis is with isolation of the agent in blood or stool and demonstration of antibodies antiBH in the Widal test. The disease responds well to chloramphenicol or co-trimoxazole.
Haverhill fever (or epidemic arthritic erythema) is a form of "rat-bite fever" caused by the bacterium "Streptobacillus moniliformis", an organism common in rats and mice. Symptoms begin to appear two to ten days after a rat bite injury. The illness resembles a severe influenza, with a moderate fever (38-40 °C, or 101-104 °F), chills, joint pain, and a diffuse red rash, located mostly on the hands and feet. The causative organism can be isolated by blood culture, and penicillin is the most common treatment. Treatment is usually quite successful, although the body can clear the infection by itself in most cases. Complications are rare, but can include endocarditis and meningitis.
Despite its name, it can present without being bitten by a rat.
The disease was recognized from an outbreak which occurred in Haverhill, Massachusetts in January, 1926. The organism "S. moniliformis" was isolated from the patients. Epidemiology implicated infection via consumption of milk from one particular dairy.
Polymer fume fever or fluoropolymer fever, also informally called Teflon flu, is an inhalation fever caused by the fumes released when polytetrafluoroethylene (PTFE, known under the trade name Teflon) reaches temperatures of 300 °C (572 °F) to 450 °C (842 °F). When PTFE is heated above 450 °C the pyrolysis products are different and inhalation may cause acute lung injury. Symptoms are flu-like (chills, headaches and fevers) with chest tightness and mild cough. Onset occurs about 4 to 8 hours after exposure to the pyrolysis products of PTFE. A high white blood cell count may be seen and chest x-ray findings are usually minimal.
The polymer fumes are especially harmful to certain birds whose breathing, optimized for rapidity, allows toxins which are excluded by human lungs. Fumes from Teflon in very high heat are fatal to parrots, as well as some other birds (PTFE Toxicosis).
The study of RRF has been recently facilitated by the development of a mouse model. Mice infected with RRV develop hind-limb arthritis/arthralgia which is similar to human disease. The disease in mice is characterized by an inflammatory infiltrate including macrophages which are immunopathogenic and exacerbate disease. Furthermore, mice deficient in the C3 protein do not suffer from severe disease following infection. This indicates that an aberrant innate immune response is responsible for severe disease following RRV infection.
There are several populations that have a higher risk for contracting coccidioidomycosis and developing the advanced disseminated version of the disease. Populations with exposure to the airborne arthroconidia working in agriculture and construction have a higher risk. Outbreaks have also been linked to earthquakes, windstorms and military training exercises where the ground is disturbed. Historically an infection is more likely to occur in males than females, although this could be attributed to occupation rather than gender specific. Women who are pregnant and immediately postpartum are at a high risk of infection and dissemination. There is also an association between stage of pregnancy and severity of the disease, with third trimester women being more likely to develop dissemination. Presumably this is related to highly elevated hormonal levels, which stimulate growth and maturation of spherules and subsequent release of endospores. Certain ethnic populations are more susceptible to disseminated coccioidomycosis. The risk of dissemination is 175 times greater in Filipinos and 10 times greater in African Americans than non-Hispanic whites. Individuals with a weakened immune system are also more susceptible to the disease. In particular, individuals with HIV and diseases that impair T-cell function. Individuals with pre-existing conditions such as diabetes are also at a higher risk. Age also affects the severity of the disease, with more than one third of deaths being in the 65-84 age group.
Protection is offered by Q-Vax, a whole-cell, inactivated vaccine developed by an Australian vaccine manufacturing company, CSL Limited. The intradermal vaccination is composed of killed "C. burnetii" organisms. Skin and blood tests should be done before vaccination to identify pre-existing immunity, because vaccinating people who already have an immunity can result in a severe local reaction. After a single dose of vaccine, protective immunity lasts for many years. Revaccination is not generally required. Annual screening is typically recommended.
In 2001, Australia introduced a national Q fever vaccination program for people working in “at risk” occupations. Vaccinated or previously exposed people may have their status recorded on the Australian Q Fever Register, which may be a condition of employment in the meat processing industry. An earlier killed vaccine had been developed in the Soviet Union, but its side effects prevented its licensing abroad.
Preliminary results suggest vaccination of animals may be a method of control. Published trials proved that use of a registered phase vaccine (Coxevac) on infected farms is a tool of major interest to manage or prevent early or late abortion, repeat breeding, anoestrus, silent oestrus, metritis, and decreases in milk yield when "C. burnetii" is the major cause of these problems.
Measures to reduce contact between the vesper mouse and humans may have contributed to limiting the number of outbreaks, with no cases identified between 1973 and 1994. Although there are no cures or vaccine for the disease, a vaccine developed for the genetically related Junín virus which causes Argentine hemorrhagic fever has shown evidence of cross-reactivity to Machupo virus, and may therefore be an effective prophylactic measure for people at high risk of infection. Post infection (and providing that the person survives the infection), those that have contracted BHF are usually immune to further infection of the disease.
The disease can occur in horses of any age, breed or gender. In the US, it occurs throughout the country and at any time of year. The disease was traditionally thought to occur mainly in dry, arid regions, but from at least 2005, its range has been increasing into areas where it was not previously seen, such as the Midwestern US, and Western Canada. Environmental risk factors include over 7 days of a weekly average land surface temperatures above 35 °C, and drier soils; these factors were implicated in an outbreak in Kansas in 2012.
A drug-resistant strain of scarlet fever, resistant to macrolide antibiotics such as erythromycin, but retaining drug-sensitivity to beta-lactam antibiotics such as penicillin, emerged in Hong Kong in 2011, accounting for at least two deaths in that city—the first such in over a decade. About 60% of circulating strains of the group A "Streptococcus" which cause scarlet fever in Hong Kong are resistant to macrolide antibiotics, says Professor Kwok-yung Yuen, head of Hong Kong University's microbiology department. Previously, observed resistance rates had been 10–30%; the increase is likely the result of overuse of macrolide antibiotics in recent years.
An inflammatory reaction of the airways and alveoli, the mechanism of organic dust toxic syndrome is thought to be toxic rather than autoimmune in origin. The airways are exposed to high concentrations of organic dust created by some form of disturbance or mechanical process. They can be such materials such as grain kernel fragments, bits of insects, bacteria, fungal spores, molds or chemical residues, the individual particles 0.1 to 50 µm in size. A common scenario is exposure to moldy grain, hay or woodchips, with farmers and pig workers the most common occupations affected. Those who work with grain, poultry and mushrooms also frequently report symptoms.
Investigational vaccines exist for Argentine hemorrhagic fever and RVF; however, neither is approved by FDA or commonly available in the United States.
The structure of the attachment glycoprotein has been determined by X-ray crystallography and this glycoprotein is likely to be an essential component of any successful vaccine.
AHF is a grave acute disease which may progress to recovery or death in 1 to 2 weeks. The incubation time of the disease is between 10 and 12 days, after which the first symptoms appear: fever, headaches, weakness, loss of appetite and will. These intensify less than a week later, forcing the infected to lie down, and producing stronger symptoms such as vascular, renal, hematological and neurological alterations. This stage lasts about 3 weeks.
If untreated, the mortality of AHF reaches 15–30%. The specific treatment includes plasma of recovered patients, which, if started early, is extremely effective and reduces mortality to 1%.
Ribavirin also has shown some promise in treating arenaviral diseases.
The disease was first detected in the 1950s in the Junín Partido in Buenos Aires, after which its agent, the Junín virus, was named upon its identification in 1958. In the early years, about 1,000 cases per year were recorded, with a high mortality rate (more than 30%). The initial introduction of treatment serums in the 1970s reduced this lethality.
The illness is generally self-limiting. Management on the whole is preventative, by limiting exposure to mouldy environments with ventilation, or by wearing respiratory protection such as facemasks.
The disease was first reported in the town of in Buenos Aires province, Argentina in 1958, giving it one of the names by which it is known. Various theories about its nature were proposed: it was Weil's disease, leptospirosis, caused by chemical pollution. It was associated with fields containing stubble after the harvest, giving it another of its names.
The endemic area of AHF covers approximately 150,000 km², compromising the provinces of Buenos Aires, Córdoba, Santa Fe and La Pampa, with an estimated risk population of 5 million.
The vector, a small rodent known locally as "ratón maicero" ("maize mouse"; "Calomys musculinus"), suffers from chronic asymptomatic infection, and spreads the virus through its saliva and urine. Infection is produced through contact of skin or mucous membranes, or through inhalation of infected particles. It is found mostly in people who reside or work in rural areas; 80% of those infected are males between 15 and 60 years of age.
About 15–20% of hospitalized Lassa fever patients will die from the illness. The overall mortality rate is estimated to be 1%, but during epidemics, mortality can climb as high as 50%. The mortality rate is greater than 80% when it occurs in pregnant women during their third trimester; fetal death also occurs in nearly all those cases. Abortion decreases the risk of death to the mother. Some survivors experience lasting effects of the disease, and can include partial or complete deafness.
Because of treatment with ribavirin, fatality rates are continuing to decline.