Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
As many as 50–70% of people who survive traffic accidents have facial trauma. In most developed countries, violence from other people has replaced vehicle collisions as the main cause of maxillofacial trauma; however in many developing countries traffic accidents remain the major cause. Increased use of seat belts and airbags has been credited with a reduction in the incidence of maxillofacial trauma, but fractures of the mandible (the jawbone) are not decreased by these protective measures. The risk of maxillofacial trauma is decreased by a factor of two with use of motorcycle helmets. A decline in facial bone fractures due to vehicle accidents is thought to be due to seat belt and drunk driving laws, strictly enforced speed limits and use of airbags. In vehicle accidents, drivers and front seat passengers are at highest risk for facial trauma.
Facial fractures are distributed in a fairly normal curve by age, with a peak incidence occurring between ages 20 and 40, and children under 12 suffering only 5–10% of all facial fractures. Most facial trauma in children involves lacerations and soft tissue injuries. There are several reasons for the lower incidence of facial fractures in children: the face is smaller in relation to the rest of the head, children are less often in some situations associated with facial fractures such as occupational and motor vehicle hazards, there is a lower proportion of cortical bone to cancellous bone in children's faces, poorly developed sinuses make the bones stronger, and fat pads provide protection for the facial bones.
Head and brain injuries are commonly associated with facial trauma, particularly that of the upper face; brain injury occurs in 15–48% of people with maxillofacial trauma. Coexisting injuries can affect treatment of facial trauma; for example they may be emergent and need to be treated before facial injuries. People with trauma above the level of the collar bones are considered to be at high risk for cervical spine injuries (spinal injuries in the neck) and special precautions must be taken to avoid movement of the spine, which could worsen a spinal injury.
The site and type of brachial plexus injury determine the prognosis. Avulsion and rupture injuries require timely surgical intervention for any chance of recovery. For milder injuries involving buildup of scar tissue and for neurapraxia, the potential for improvement varies, but there is a fair prognosis for spontaneous recovery, with a 90–100% return of function.
In terms of overuse injuries a British study found that:
- 40 percent occurred in the fingers
- 16 percent in the shoulders
- 12 percent in the elbows
- 5 percent were the knees
- 5 percent back
- 4 percent wrists
One injury that tend to be very common among climbers is Carpal tunnel syndrome. It is found in about 25% of climbers.
Injury mechanisms such as falls, assaults, sports injuries, and vehicle crashes are common causes of facial trauma in children as well as adults. Blunt assaults, blows from fists or objects, are a common cause of facial injury. Facial trauma can also result from wartime injuries such as gunshots and blasts.
Animal attacks and work-related injuries such as industrial accidents are other causes. Vehicular trauma is one of the leading causes of facial injuries. Trauma commonly occurs when the face strikes a part of the vehicle's interior, such as the steering wheel. In addition, airbags can cause corneal abrasions and lacerations (cuts) to the face when they deploy.
Brachial plexus injury is found in both children and adults, but there is a difference between children and adults with BPI.
604 injured rock climbers were prospectively evaluated from January 1998 to December 2001, due to the rapid growth of new complex finger trauma in the mid-1980s. Of the most frequent injuries, three out of four were related to the fingers: pulley injuries accounted for 20%, tendovaginitis for 7%, and joint capsular damage for 6.1%.
Hand and wrist injuries are reported to account for fifteen to twenty percent of emergency room injuries, and metacarpal fractures represent a significant number of those injuries. Hand injuries of this sort are most prevalent among fifteen- to thirty-five-year-old males, and the fifth metacarpal is the one most commonly affected.
Males are nearly fifty percent more likely to sustain fracture from a punch mechanism than females. Male intentional punch injuries are correlated predominantly with social deprivation, while female punch intentional injuries show more correlation with psychiatric disorders.
Approximately 3.7 male hand injuries, per 1000, per year, and 1.3 female hand injuries, per 1000, per year, have been reported. Common mechanisms of injury are gender specific. Although the fiscal cost is not available, it can be asserted that the cost is reasonably significant per individual, depending on the cost of emergency care, immobilization, surgery, follow up doctors’ visits, etc. in addition to the fiscal impact from loss of and/or limited work abilities.
In 2010 national statistics was done by Agency for Healthcare Research and Quality for posterior cruciate ligaments injuries. They found that 463 patients were discharge for having some type of PCL injury. The 18- to 44-year-old age group was found to have the highest injuries reported (figure 1). One reason why this age group consists of the majority of injuries to the PCL is because people are still very active in sports at this age. Men were also reported having more injuries to the PCL (figure 3).
Workers in certain fields are at risk of repetitive strains. Most occupational injuries are musculoskeletal disorders, and many of these are caused by cumulative trauma rather than a single event. Miners and poultry workers, for example, must make repeated motions which can cause tendon, muscular, and skeletal injuries.
Scapular fracture is present in about 1% of cases of blunt trauma and 3–5% of shoulder injuries. An estimated 0.4–1% of bone fractures are scapular fractures.
The injury is associated with other injuries 80–90% of the time. Scapular fracture is associated with pulmonary contusion more than 50% of the time. Thus when the scapula is fractured, other injuries such as abdominal and chest trauma are automatically suspected. People with scapular fractures often also have injuries of the ribs, lung, and shoulder. Pneumothorax (an accumulation of air in the space outside the lung), clavicle fractures, and injuries to the blood vessels are among the most commonly associated injuries. The forces involved in scapular fracture can also cause tracheobronchial rupture, a tear in the airways. Fractures that occur in the scapular body are the type most likely to be accompanied by other injuries; other bony and soft tissue injuries accompany these fractures 80–95% of the time. Associated injuries can be serious and potentially deadly, and usually it is the associated injuries, rather than the scapular fracture, that have the greatest effect on the outcome. Scapular fractures can also occur by themselves; when they do, the death rate (mortality) is not significantly increased.
The mean age of people affected is 35–45 years.
People vary in their tendency to get MSDs. Gender is a factor with a higher rate in women than men. Obesity is also a factor, with overweight individuals having a higher risk of some MSDs, specifically lower back.
Isolated and combined posterolateral knee injuries are difficult to accurately diagnose in patients presenting with acute knee injuries. The incidence of isolated posterolateral corner injuries has been reported to be between 13% and 28%. Most PLC injuries accompany an ACL or PCL tear, and can contribute to ACL or PCL reconstruction graft failure if not recognized and treated. A study by LaPrade "et al." in 2007 showed the incidence of posterolateral knee injuries in patients presenting with acute knee injuries and hemarthrosis (blood in the knee joint) was 9.1%.
According to the posterior cruciate ligament injuries only account for 1.5 percent of all knee injuries (figure 2). If it is a single injury to the posterior cruciate ligament that requires surgery only accounted for 1.1 percent compared to all other cruciate surgeries but when there was multiple injuries to the knee the posterior cruciate ligament accounted for 1.2 percent of injuries.
Boxers and other combat athletes routinely use hand wraps and boxing gloves to help stabilize the hand, greatly reducing pain and risk of injury during impact. Proper punching form is the most important factor to prevent this type of fracture.
MSDs are caused by biomechanical load which is the force that must be applied to do tasks, the duration of the force applied, and the frequency with which tasks are performed. Activities involving heavy loads can result in acute injury, but most occupation-related MSDs are from motions that are repetitive, or from maintaining a static position. Even activities that do not require a lot of force can result in muscle damage if the activity is repeated often enough at short intervals. MSD risk factors involve doing tasks with heavy force, repetition, or maintaining a nonneutral posture. Of particular concern is the combination of heavy load with repetition. Although awkward posture is often blamed for lower back pain, a systematic review of the literature failed to find a consistent connection.
About 1.8 million people go to the emergency department each year due to hand injuries.
Ice and elevation may help reduce pain and swelling, and allow the injury to begin to recover.
Severe sprains accompanied by significant pain and swelling may need to be immobilized.
Injury is damage to the body caused by external force. This may be caused by accidents, falls, hits, weapons, and other causes. Major trauma is injury that has the potential to cause prolonged disability or death.
In 2013, 4.8 million people died from injuries, up from 4.3 million in 1990. More than 30% of these deaths were transport-related injuries. In 2013, 367,000 children under the age of five died from injuries, down from 766,000 in 1990. Injuries are the cause of 9% of all deaths, and are the sixth-leading cause of death in the world.
Future research into posterolateral injuries will focus on both the treatment and diagnosis of these types of injuries to improve PLC injury outcomes. Studies are needed to correlate injury patterns and mechanisms with clinical measures of knee instability and laxity.
Climber's finger is one of the most common climbing injuries within the sport of rock climbing. It is an overuse injury that usually manifests in a swollen middle or ring finger due to a damaged flexor tendon pulley, normally the A2 or A4 pulley. It is caused by a climber trying to support his or her body weight with one or two fingers, and is particularly common after a repeated utilization of small holds. Continued climbing on an injured finger may result in increased downtime in order to recover.
Management of tendon injuries in the fingers is to follow the RICE method.
- Immediately cease climbing and any other activity that puts stress on the injured finger. Consult a doctor if there is noticeable "bowstringing" on the flexor tendon or if you are the least unsure about the nature of the injury.
- There are different theories out there for the preferred line of approach. Some argue for the use of NSAIDs and ice for visible swelling only, others argue diclofenac sodium should be applied and carefully rubbed in on the injury until the swelling starts to give.
- When the pain and swelling is gone (depending of the grade of the injury, 1–4 weeks), begin with an active healing process – containing squeezing putty clay or a stress ball. Combine this with light massage and mild stretching to ensure your finger will heal properly and better prepared for future stress. The use of heating pads and cold water baths are also mentioned in several sources in order to increase blood flow. Use this therapy for about twice as long as the previous resting period (2–8 weeks) before gradually returning, with the utmost care, to climbing.
- Gradually return to climbing while using prophylactic taping every time you climb, and spend the first weeks climbing relatively easy routes with big holds, good footholds and keep your sessions short and stay away from overhangs and campus areas/boards.
- Return to full-force climbing if easy climbing yields no pain. Continue taping (it will also serve as a mental note of the previous injury) and avoid tweaky crimps and pockets for several months, since complete tendon healing can take 100 days or more.
Because of the high frequency of associated injuries, clinicians are taught to suspect that a patient has multiple severe injuries if a sternal fracture is present. Sternal fracture is commonly associated with injuries to the heart and lungs; if a person is injured with enough force to fracture the sternum, injuries such as myocardial and pulmonary contusions are likely. Other associated injuries that may occur include damage to blood vessels in the chest, myocardial rupture, head and abdominal injuries, flail chest, and vertebral fracture. Sternal fractures may also accompany rib fractures and are high-energy enough injuries to cause bronchial tears (ruptures of the bronchioles). They may hinder breathing. Due to the associated injuries, the mortality rate for people with sternal fracture is high, at an estimated 25–45%. However, when sternal fractures occur in isolation, their outcome is very good.
There is controversy over the question of whether the presence of sternal fracture is an indication of cardiac injuries.
An occupational injury is bodily damage resulting from working. The most common organs involved are the spine, hands, the head, lungs, eyes, skeleton, and skin. Occupational injuries can result from exposure to occupational hazards (physical, chemical, biological, or psychosocial), such as temperature, noise, insect or animal bites, blood-borne pathogens, aerosols, hazardous chemicals, radiation, and occupational burnout.
While many prevention methods are set in place, injuries may still occur due to poor ergonomics, manual handling of heavy loads, misuse or failure of equipment, exposure to general hazards, and inadequate safety training.
Gamekeeper's thumb and skier's thumb are two similar conditions, both of which involve insufficiency of the ulnar collateral ligament (UCL) of the thumb. The chief difference between these two conditions is that Skier's thumb is generally considered to be an acute condition acquired after a fall or similar abduction injury to the metacarpophalangeal (MCP) joint of the thumb, whereas gamekeeper's thumb typically refers to a chronic condition which has developed as a result of repeated episodes of lower-grade hyperabduction over a period of time. Gamekeeper's thumb is more difficult to treat because the UCL has lengthened and become thinner as a result of repeated injury. It is moderately painful compared to similar injuries.
In addition to skiing, this injury (resulting from forced abduction or hyperextension of the proximal phalanx of the thumb) is seen in a wide variety of other athletic endeavors. The most common mechanism of injury appears to be when a person extends the arm in an attempt to block a fall. The stress resulting from falling onto an abducted thumb produces a valgus force on the MCP joint of the thumb, resulting in a sprain or tear of the UCL.
In a recent study, 49% of UCL disruptions of the thumb were caused by a fall onto an outstretched hand. Sports injuries accounted for most of the remaining injuries, with only 2.4% acquired as a result of skiing injuries.
The term jammed finger refers to finger joint pain and swelling from an impact injury. It's the most common injury in sports. This injury tends to be very painful, and immediate treatment will usually help heal the joint faster. Most jammed fingers heal relatively quickly, if no fracture occurs. If there is a fracture, however, the healing process will take longer; anywhere from one or two weeks to several months, and the methods of healing will become more in depth. Toes can become jammed as well, but not as often as fingers.