Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The U.S. Centers for Disease Control and Prevention (CDC) publishes a journal "Emerging Infectious Diseases" that identifies the following factors contributing to disease emergence:
- Microbial adaption; e.g. genetic drift and genetic shift in Influenza A
- Changing human susceptibility; e.g. mass immunocompromisation with HIV/AIDS
- Climate and weather; e.g. diseases with zoonotic vectors such as West Nile Disease (transmitted by mosquitoes) are moving further from the tropics as the climate warms
- Change in human demographics and trade; e.g. rapid travel enabled SARS to rapidly propagate around the globe
- Economic development; e.g. use of antibiotics to increase meat yield of farmed cows leads to antibiotic resistance
- Breakdown of public health; e.g. the current situation in Zimbabwe
- Poverty and social inequality; e.g. tuberculosis is primarily a problem in low-income areas
- War and famine
- Bioterrorism; e.g. 2001 Anthrax attacks
- Dam and irrigation system construction; e.g. malaria and other mosquito borne diseases
A list of the more common and well-known diseases associated with infectious pathogens is provided and is not intended to be a complete listing.
Infectious pathogen-associated diseases include many of the most common and costly chronic illnesses. The treatment of chronic diseases accounts for 75% of all US healthcare costs (amounting to $1.7 trillion in 2009).
Outbreaks of zoonoses have been traced to human interaction with and exposure to animals at fairs, petting zoos, and other settings. In 2005, the Centers for Disease Control and Prevention (CDC) issued an updated list of recommendations for preventing zoonosis transmission in public settings. The recommendations, developed in conjunction with the National Association of State Public Health Veterinarians, include educational responsibilities of venue operators, limiting public and animal contact, and animal care and management.
Contact with farm animals can lead to disease in farmers or others that come into contact with infected animals. Glanders primarily affects those who work closely with horses and donkeys. Close contact with cattle can lead to cutaneous anthrax infection, whereas inhalation anthrax infection is more common for workers in slaughterhouses, tanneries and wool mills. Close contact with sheep who have recently given birth can lead to clamydiosis, or enzootic abortion, in pregnant women, as well as an increased risk of Q fever, toxoplasmosis, and listeriosis in pregnant or the otherwise immunocompromised. Echinococcosis is caused by a tapeworm which can be spread from infected sheep by food or water contaminated with feces or wool. Bird flu is common in chickens. While rare in humans, the main public health worry is that a strain of bird flu will recombine with a human flu virus and cause a pandemic like the 1918 Spanish flu. In 2017, free range chickens in the UK were temporarily ordered to remain inside due to the threat of bird flu. Cattle are an important reservoir of cryptosporidiosis and mainly affects the immunocompromised.
An emerging infectious disease (EID) is an infectious disease whose incidence has increased in the past 20 years and could increase in the near future. Emerging infections account for at least 12% of all human pathogens. EIDs are caused by newly identified species or strains (e.g. Severe acute respiratory syndrome, HIV/AIDS) that may have evolved from a known infection (e.g. influenza) or spread to a new population (e.g. West Nile fever) or to an area undergoing ecologic transformation (e.g. Lyme disease), or be "reemerging" infections, like drug resistant tuberculosis. Nosocomial (hospital-acquired) infections, such as methicillin-resistant Staphylococcus aureus are emerging in hospitals, and extremely problematic in that they are resistant to many antibiotics. Of growing concern are adverse synergistic interactions between emerging diseases and other infectious and non-infectious conditions leading to the development of novel syndemics. Many emerging diseases are zoonotic - an animal reservoir incubates the organism, with only occasional transmission into human populations.
Any age may be affected although it is most common in children aged five to fifteen years. By the time adulthood is reached about half the population will have become immune following infection at some time in their past. Outbreaks can arise especially in nursery schools, preschools, and elementary schools. Infection is an occupational risk for school and day-care personnel. There is no vaccine available for human parvovirus B19, though attempts have been made to develop one.
Infectious diseases are sometimes called contagious disease when they are easily transmitted by contact with an ill person or their secretions (e.g., influenza). Thus, a contagious disease is a subset of infectious disease that is especially infective or easily transmitted. Other types of infectious/transmissible/communicable diseases with more specialized routes of infection, such as vector transmission or sexual transmission, are usually not regarded as "contagious", and often do not require medical isolation (sometimes loosely called quarantine) of victims. However, this specialized connotation of the word "contagious" and "contagious disease" (easy transmissibility) is not always respected in popular use.
Infectious diseases are commonly transmitted from person to person through direct contact. The types of contact are through person to person and droplet spread. Indirect contact such as airborne transmission, contaminated objects, food and drinking water, animal person contact, animal reservoirs, insect bites, and environmental reservoirs are another way infectious diseases are transmitted,
Disease can arise if the host's protective immune mechanisms are compromised and the organism inflicts damage on the host. Microorganisms can cause tissue damage by releasing a variety of toxins or destructive enzymes. For example, Clostridium tetani releases a toxin that paralyzes muscles, and staphylococcus releases toxins that produce shock and sepsis. Not all infectious agents cause disease in all hosts. For example, less than 5% of individuals infected with polio develop disease. On the other hand, some infectious agents are highly virulent. The prion causing mad cow disease and Creutzfeldt–Jakob disease invariably kills all animals and people that are infected.
Persistent infections occur because the body is unable to clear the organism after the initial infection. Persistent infections are characterized by the continual presence of the infectious organism, often as latent infection with occasional recurrent relapses of active infection. There are some viruses that can maintain a persistent infection by infecting different cells of the body. Some viruses once acquired never leave the body. A typical example is the herpes virus, which tends to hide in nerves and become reactivated when specific circumstances arise.
Persistent infections cause millions of deaths globally each year. Chronic infections by parasites account for a high morbidity and mortality in many underdeveloped countries.
Prognosis is generally poor. If a patient survives, recovery may be prompt and complete, or protracted with sequelae, such as orchitis, hepatitis, uveitis, parotitis, desquamation or alopecia. Importantly, MARV is known to be able to persist in some survivors and to either reactivate and cause a secondary bout of MVD or to be transmitted via sperm, causing secondary cases of infection and disease.
Of the 252 people who contracted Marburg during the 2004–2005 outbreak of a particularly virulent serotype in Angola, 227 died, for a case fatality rate of 90%.
Although all age groups are susceptible to infection, children are rarely infected. In the 1998–2000 Congo epidemic, only 8% of the cases were children less than 5 years old.
MVD is caused by two viruses Marburg virus (MARV) and Ravn virus (RAVV)family Filoviridae
Marburgviruses are endemic in arid woodlands of equatorial Africa. Most marburgvirus infections were repeatedly associated with people visiting natural caves or working in mines. In 2009, the successful isolation of infectious MARV and RAVV was reported from healthy Egyptian rousettes ("Rousettus aegyptiacus") caught in caves. This isolation strongly suggests that Old World fruit bats are involved in the natural maintenance of marburgviruses and that visiting bat-infested caves is a risk factor for acquiring marburgvirus infections. Further studies are necessary to establish whether Egyptian rousettes are the actual hosts of MARV and RAVV or whether they get infected via contact with another animal and therefore serve only as intermediate hosts. Another risk factor is contact with nonhuman primates, although only one outbreak of MVD (in 1967) was due to contact with infected monkeys. Finally, a major risk factor for acquiring marburgvirus infection is occupational exposure, i.e. treating patients with MVD without proper personal protective equipment.
Contrary to Ebola virus disease (EVD), which has been associated with heavy rains after long periods of dry weather, triggering factors for spillover of marburgviruses into the human population have not yet been described.
A viral disease (or viral infection) occurs when an organism's body is invaded by pathogenic viruses, and infectious virus particles (virions)
attach to and enter susceptible cells.
The Coggins test (agar immunodiffusion) is a sensitive diagnostic test for equine infectious anemia developed by Dr. Leroy Coggins in the 1970s.
Currently, the US does not have an eradication program due to the low rate of incidence. However, many states require a negative Coggins test for interstate travel. In addition, most horse shows and events require a negative Coggins test. Most countries require a negative test result before allowing an imported horse into the country.
Horse owners should verify that all the horses at a breeding farm and or boarding facility have a negative Coggins test before using the services of the facility. A Coggins test should be done on an annual basis. Tests every 6 months are recommended if there is increased traveling.
A vaccine is available, called "Chinese Live Attenuated EIA vaccine", developed in China and widely used there since 1983. Another attenuated live virus vaccine is in development in the United States.
Reuse of syringes and needles is a risk factor for transfer of the disease. Currently in the United States, all horses that test positive must be reported to federal authorities by the testing laboratory. EIA-positive horses are infected for life. Options for the horse include sending the horse to a recognized research facility, branding the horse and quarantining it at least 200 yards from other horses for the rest of its life, and euthanizing the horse. Very few quarantine facilities exist, which usually leads to the option of euthanizing the horse. The Florida Research Institute for Equine Nurturing, Development and Safety (a.k.a. F.R.I.E.N.D.S.) is one of the largest such quarantine facilities and is located in south Florida.
The horse industry and the veterinary industry strongly suggest that the risks posed by infected horses, even if they are not showing any clinical signs, are enough of a reason to impose such stringent rules. The precise impacts of the disease on the horse industry are unknown.
Marburg virus is a hemorrhagic fever virus of the "Filoviridae" family of viruses and a member of the species "Marburg marburgvirus", genus "Marburgvirus". Marburg virus (MARV) causes Marburg virus disease in humans and nonhuman primates, a form of viral hemorrhagic fever. Considered to be extremely dangerous, the WHO rates it as a Risk Group 4 Pathogen (requiring biosafety level 4-equivalent containment). In the United States, the NIH/National Institute of Allergy and Infectious Diseases ranks it as a Category A Priority Pathogen and the Centers for Disease Control and Prevention lists it as a Category A Bioterrorism Agent. It is also listed as a biological agent for export control by the Australia Group.
The virus can be transmitted by exposure to one species of fruit bats or it can be transmitted between people via body fluids through unprotected copulation and broken skin. The disease can cause bleeding (haemorrhage), fever and other symptoms much like Ebola. Funeral rituals are a particular risk. Actual treatment of the virus after infection is not possible but early, professional treatment of symptoms like dehydration considerably increase survival chances.
In 2009, expanded clinical trials of an Ebola and Marburg vaccine began in Kampala, Uganda.
Brazilian hemorrhagic fever (BzHF) is an infectious disease caused by the Sabiá virus, an Arenavirus. The Sabiá virus is one of the arenoviruses from South America to cause hemorrhagic fever. It shares a common progenitor with the Junin virus, Machupo virus, Tacaribe virus, and Guanarito virus. It is an enveloped RNA virus and is highly infectious and lethal. Very little is known about this disease, but it is thought to be transmitted by the excreta of rodents.
There have only been three documented infections of the Sabiá virus, only one of which occurred naturally and the other two cases occurred in the clinical setting. The only naturally occurring case was in 1990, when a female agricultural engineer who was staying in the neighborhood of Jardim Sabiá near São Paulo, Brazil contracted the disease. She presented with hemorrhagic fever and died. Her autopsy showed liver necrosis. A virologist who was studying the woman's disease contracted the virus but survived. Ribavirin was not given in these first two cases. Four years later, in 1994, a researcher was exposed to the virus in a level 3 biohazard facility at Yale University when a centrifuge bottle cracked, leaked, and released aerosolized virus particle. He was successfully treated with ribavirin.
Ribavirin is thought to be effective in treating the illness, similar to other arenaviruses. Compared to the patients who did not receive ribavirin, the patient who was treated with it had a shorter and less severe clinical course. Symptomatic control such as fluids to address dehydration and bleeding may also be required.
The Sabiá virus is a Biosafety Level 4 pathogen.
This virus has also been implicated as a means for bioterrorism, as it can be spread through aerosols.
Five families of RNA viruses have been recognised as being able to cause hemorrhagic fevers.
- The family "Arenaviridae" include the viruses responsible for Lassa fever (Lassa virus), Lujo virus, Argentine (Junin virus), Bolivian (Machupo virus), Brazilian (Sabiá virus), Chapare hemorrhagic fever (Chapare virus) and Venezuelan (Guanarito virus) hemorrhagic fevers.
- The family "Bunyaviridae" include the members of the "Hantavirus" genus that cause hemorrhagic fever with renal syndrome (HFRS), the Crimean-Congo hemorrhagic fever (CCHF) virus from the "Nairovirus" genus, Garissa virus and Ilesha virus from the "Orthobunyavirus" and the Rift Valley fever (RVF) virus from the "Phlebovirus" genus.
- The family "Filoviridae" include Ebola virus and Marburg virus.
- The family "Flaviviridae" include dengue, yellow fever, and two viruses in the tick-borne encephalitis group that cause VHF: Omsk hemorrhagic fever virus and Kyasanur Forest disease virus.
- In September 2012 scientists writing in the journal PLOS Pathogens reported the isolation of a member of the "Rhabdoviridae" responsible for 2 fatal and 2 non-fatal cases of hemorrhagic fever in the Bas-Congo district of the Democratic Republic of Congo. The non-fatal cases occurred in healthcare workers involved in the treatment of the other two, suggesting the possibility of person-to-person transmission. This virus appears to be unrelated to previously known Rhabdoviruses.
The pathogen that caused the cocoliztli epidemics in Mexico of 1545 and 1576 is still unknown.
The VHF viruses are spread in a variety of ways. Some may be transmitted to humans through a respiratory route. According to Soviet defector Ken Alibek, Soviet scientists concluded China may have tried to weaponise a VHF virus during the late 1980's but discontinued to do so after an outbreak . The virus is considered by military medical planners to have a potential for aerosol dissemination, weaponizaton, or likelihood for confusion with similar agents that might be weaponized.
Symptoms of infectious mononucleosis are fever, sore throat, and swollen lymph glands. Sometimes, a swollen spleen or liver involvement may develop. Heart problems or involvement of the central nervous system occurs only rarely, and infectious mononucleosis is almost never fatal. There are no known associations between active EBV infection and problems during pregnancy, such as miscarriages or birth defects. Although the symptoms of infectious mononucleosis usually resolve in 1 or 2 months, EBV remains dormant or latent in a few cells in the throat and blood for the rest of the person's life. Periodically, the virus can reactivate and is commonly found in the saliva of infected persons. Reactivated and post-latent virus may pass the placental barrier in (also seropositive) pregnant women via macrophages and therefore can infect the fetus. Also re-infection of prior seropositive individuals may occur. In contrast, reactivation in adults usually occurs without symptoms of illness.
EBV also establishes a lifelong dormant infection in some cells of the body's immune system. A late event in a very few carriers of this virus is the emergence of Burkitt's lymphoma and nasopharyngeal carcinoma, two rare cancers. EBV appears to play an important role in these malignancies, but is probably not the sole cause of disease.
Most individuals exposed to people with infectious mononucleosis have previously been infected with EBV and are not at risk for infectious mononucleosis. In addition, transmission of EBV requires intimate contact with the saliva (found in the mouth) of an infected person. Transmission of this virus through the air or blood does not normally occur. The incubation period, or the time from infection to appearance of symptoms, ranges from 4 to 6 weeks. Persons with infectious mononucleosis may be able to spread the infection to others for a period of weeks. However, no special precautions or isolation procedures are recommended, since the virus is also found frequently in the saliva of healthy people. In fact, many healthy people can carry and spread the virus intermittently for life. These people are usually the primary reservoir for person-to-person transmission. For this reason, transmission of the virus is almost impossible to prevent.
The clinical diagnosis of infectious mononucleosis is suggested on the basis of the symptoms of fever, sore throat, swollen lymph glands, and the age of the patient. Usually, laboratory tests are needed for confirmation. Serologic results for persons with infectious mononucleosis include an elevated white blood cell count, an increased percentage of certain atypical white blood cells, and a positive reaction to a "mono spot" test.
Porcine circoviral disease (PCVD) and Porcine circovirus associated disease (PCVAD), is a disease seen in domestic pigs. This disease causes illness in piglets, with clinical signs including progressive loss of body condition, visibly enlarged lymph nodes, difficulty in breathing, and sometimes diarrhea, pale skin, and jaundice. PCVD is very damaging to the pig-producing industry and has been reported worldwide. PCVD is caused by porcine circovirus type 2 (PCV-2).
The North American industry endorses "PCVAD" and European use "PCVD" to describe this disease.
Infectious pancreatic necrosis (IPN) is a severe viral disease of salmonid fish. It is caused by infectious pancreatic necrosis virus, which is a member of the Birnaviridae family. This disease mainly affects young salmonids, such as trout or salmon, of less than six months, although adult fish may carry the virus without showing symptoms. Resistance to infection develops more rapidly in warmer water. It is highly contagious and found worldwide, but some regions have managed to eradicate or greatly reduce the incidence of disease. The disease is normally spread horizontally via infected water, but spread also occurs vertically. It is not a zoonosis.
Fifth disease is transmitted primarily by respiratory secretions (saliva, mucus, etc.) but can also be spread by contact with infected blood. The incubation period (the time between the initial infection and the onset of symptoms) is usually between 4 and 21 days. Individuals with fifth disease are most infectious before the onset of symptoms. Typically, school children, day-care workers, teachers and parents are most likely to be exposed to the virus. When symptoms are evident, there is little risk of transmission; therefore, symptomatic individuals don't need to be isolated.
Serious complications are uncommon, occurring in less than 5% of cases:
- CNS complications include meningitis, encephalitis, hemiplegia, Guillain–Barré syndrome, and transverse myelitis. Prior infectious mononucleiosis has been linked to the development of multiple sclerosis (MS).
- Hematologic: Hemolytic anemia (direct Coombs test is positive) and various cytopenias, and bleeding (caused by thrombocytopenia) can occur.
- Mild jaundice
- Hepatitis with the Epstein–Barr virus is rare.
- Upper airway obstruction from tonsillar hypertrophy is rare.
- Fulminant disease course of immunocompromised patients is rare.
- Splenic rupture is rare.
- Myocarditis and pericarditis are rare.
- Postural orthostatic tachycardia syndrome
- Chronic fatigue syndrome
- Cancers associated with the Epstein-Barr virus include: Burkitt's lymphoma, Hodgkin's lymphoma and lymphomas in general as well as nasopharyngeal and gastric carcinoma.
Once the acute symptoms of an initial infection disappear, they often do not return. But once infected, the patient carries the virus for the rest of his or her life. The virus typically lives dormantly in B lymphocytes. Independent infections of mononucleosis may be contracted multiple times, regardless of whether the patient is already carrying the virus dormantly. Periodically, the virus can reactivate, during which time the patient is again infectious, but usually without any symptoms of illness. Usually, a patient has few, if any, further symptoms or problems from the latent B lymphocyte infection. However, in susceptible hosts under the appropriate environmental stressors, the virus can reactivate and cause vague physical symptoms (or may be subclinical), and during this phase the virus can spread to others.
There is no specific treatment for infectious mononucleosis, other than treating the symptoms. In severe cases, steroids such as corticosteroids may be used to control the swelling of the throat and tonsils. Currently, there are no antiviral drugs or vaccines available.
It is important to note that symptoms related to infectious mononucleosis caused by EBV infection seldom last for more than 4 months. When such an illness lasts more than 6 months, it is frequently called chronic EBV infection. However, valid laboratory evidence for continued active EBV infection is seldom found in these patients. The illness should be investigated further to determine if it meets the criteria for chronic fatigue syndrome, or CFS. This process includes ruling out other causes of chronic illness or fatigue.
Postweaning multisystemic wasting syndrome ("PMWS") is the classic PCVD entity, caused by PCV-2. PCV-2 has a near universal distribution – present in most pig herds. In contrast, PMWS is more sporadic in its distribution. Experimental induction of PMWS has not been achieved by PCV-2 infection alone, using infectious DNA clones of the virus or a pure form of PCV-2 derived from infectious DNA clones. Therefore, it is assumed that PMWS is a multifactorial disease. PCV-2 is necessary but not sufficient for the development of PMWS. However, viral infection by itself tends to cause only mild disease, and co-factors such as other infections or immunostimulation seem necessary for development of severe disease.[1] For example, concurrent infection with porcine parvovirus or PRRS virus, or immunostimulation lead to increased replication of PCV-2 and more severe disease in PCV-2-infected pigs. There is no significant correlation of the disease with virus sequence variation with affected and control pigs.