Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The facial nerve is the seventh of 12 cranial nerves. This cranial nerve controls the muscles in the face. Facial nerve palsy is more abundant in older adults than in children and is said to affect 15-40 out of 100,000 people per year. This disease comes in many forms which include congenital, infectious, traumatic, neoplastic, or idiopathic. The most common cause of this cranial nerve damage is Bell's palsy (idiopathic facial palsy) which is a paralysis of the facial nerve. Although Bell's palsy is more prominent in adults it seems to be found in those younger than 20 or older than 60 years of age. Bell's Palsy is thought to occur by an infection of the herpes virus which may cause demyelination and has been found in patients with facial nerve palsy. Symptoms include flattening of the forehead, sagging of the eyebrow, and difficulty closing the eye and the mouth on the side of the face that is affected. The inability to close the mouth causes problems in feeding and speech. It also causes lack of taste, acrimation, and sialorrhea.
The use of steroids can help in the treatment of Bell's Palsy. If in the early stages, steroids can increase the likelihood of a full recovery. This treatment is used mainly in adults. The use of steroids in children has not been proven to work because they seem to recover completely with or without them. Children also tend to have better recovery rates than older adults. Recovery rate also depends on the cause of the facial nerve palsy (e.g. infections, perinatal injury, congenital dysplastic). If the palsy is more severe patients should seek steroids or surgical procedures. Facial nerve palsy may be the indication of a severe condition and when diagnosed a full clinical history and examination are recommended.
Although rare, facial nerve palsy has also been found in patients with HIV seroconversion. Symptoms found include headaches (bitemporal or occipital), the inability to close the eyes or mouth, and may cause the reduction of taste. Few cases of bilateral facial nerve palsy have been reported and is said to only effect 1 in every 5 million per year.
Psychological and social support has found to play a key role in the management of chronic illnesses and chronic pain conditions, such as trigeminal neuralgia. Chronic pain can cause constant frustration to an individual as well as to those around them. As a result, there are many advocacy groups.
The trigeminal nerve is a mixed cranial nerve responsible for sensory data such as tactition (pressure), thermoception (temperature), and nociception (pain) originating from the face above the jawline; it is also responsible for the motor function of the muscles of mastication, the muscles involved in chewing but not facial expression.
Several theories exist to explain the possible causes of this pain syndrome. It was once believed that the nerve was compressed in the opening from the inside to the outside of the skull; but leading research indicates that it is an enlarged or lengthened blood vessel – most commonly the superior cerebellar artery – compressing or throbbing against the microvasculature of the trigeminal nerve near its connection with the pons. Such a compression can injure the nerve's protective myelin sheath and cause erratic and hyperactive functioning of the nerve. This can lead to pain attacks at the slightest stimulation of any area served by the nerve as well as hinder the nerve's ability to shut off the pain signals after the stimulation ends. This type of injury may rarely be caused by an aneurysm (an outpouching of a blood vessel); by an AVM (arteriovenous malformation); by a tumor; such as an arachnoid cyst or meningioma in the cerebellopontine angle; or by a traumatic event such as a car accident.
Short-term peripheral compression is often painless. Persistent compression results in local demyelination with no loss of axon potential continuity. Chronic nerve entrapment results in demyelination primarily, with progressive axonal degeneration subsequently. It is, "therefore widely accepted that trigeminal neuralgia is associated with demyelination of axons in the Gasserian ganglion, the dorsal root, or both." It has been suggested that this compression may be related to an aberrant branch of the superior cerebellar artery that lies on the trigeminal nerve. Further causes, besides an aneurysm, multiple sclerosis or cerebellopontine angle tumor, include: a posterior fossa tumor, any other expanding lesion or even brainstem diseases from strokes.
Trigeminal neuralgia is found in 3–4% of people with multiple sclerosis, according to data from seven studies. It has been theorized that this is due to damage to the spinal trigeminal complex. Trigeminal pain has a similar presentation in patients with and without MS.
Postherpetic neuralgia, which occurs after shingles, may cause similar symptoms if the trigeminal nerve is damaged.
When there is no [apparent] structural cause, the syndrome is called idiopathic.
Other causes may include:
- Diabetes mellitus
- Facial nerve paralysis, sometimes bilateral, is a common manifestation of sarcoidosis of the nervous system, neurosarcoidosis.
- Bilateral facial nerve paralysis may occur in Guillain–Barré syndrome, an autoimmune condition of the peripheral nervous system.
- Moebius syndrome is a bilateral facial paralysis resulting from the underdevelopment of the VII cranial nerve (facial nerve), which is present at birth. The VI cranial nerve, which controls lateral eye movement, is also affected, so people with Moebius syndrome cannot form facial expression or move their eyes from side to side. Moebius syndrome is extremely rare, and its cause or causes are not known.
In terms of the prognosis of ulnar neuropathy early decompression of the nerve sees a return to normal ability (function). which should be immediate.Severe cubital tunnel syndrome tends to have a faster recovery process in individuals below the age of 70, as opposed to those above such an age. Finally, revisional surgery for cubital tunnel syndrome does not result well for those individuals over 50 years of age.
Central facial palsy can be caused by a lacunar infarct affecting fibers in the internal capsule going to the nucleus. The facial nucleus itself can be affected by infarcts of the pontine arteries.
In regards to the pathophysiology of ulnar neuropathy:the axon, and myelin can be affected. Within the axon, fascicles to individual muscles could be involved, with subsequent motor unit loss and amplitude decrease. Conduction block means impaired transmission via a part of the nerve. Conduction block can mean myelin damage to the involved area, slowing of conduction or significant spreading out of the temporal profile of the response with axonal integrity is a hallmark of demyelination.
A variety of surgeries have been performed including microvascular decompression (MVD) of the fifth, ninth, and tenth nerves; as well as partial cutting of the nervus intermedius, geniculate ganglion, chorda tympani and/or the ninth and tenth cranial nerves.
Cranial nerve disease is an impaired functioning of one of the twelve cranial nerves. Although it could theoretically be considered a mononeuropathy, it is not considered as such under MeSH.
It is possible for a disorder of more than one cranial nerve to occur at the same time, if a trauma occurs at a location where many cranial nerves run together, such as the jugular fossa. A brainstem lesion could also cause impaired functioning of multiple cranial nerves, but this condition would likely also be accompanied by distal motor impairment.
A neurological examination can test the functioning of individual cranial nerves, and detect specific impairments.
Atypical trigeminal neuralgia (ATN), or type 2 trigeminal neuralgia, is a form of trigeminal neuralgia, a disorder of the fifth cranial nerve. This form of nerve pain is difficult to diagnose, as it is rare and the symptoms overlap with several other disorders. The symptoms can occur in addition to having migraine headache, or can be mistaken for migraine alone, or dental problems such as temporomandibular joint disorder or musculoskeletal issues. ATN can have a wide range of symptoms and the pain can fluctuate in intensity from mild aching to a crushing or burning sensation, and also to the extreme pain experienced with the more common trigeminal neuralgia.
Geniculate ganglionitis or geniculate neuralgia (GN), also called nervus intermedius neuralgia, Ramsay Hunt syndrome, or Hunt's neuralgia, is a rare disorder characterized by severe paroxysmal neuralgic pain deep in the ear, that may spread to the ear canal, outer ear, mastoid or eye regions. GN may also occur in combination with trigeminal or glossopharyngeal neuralgia.
The pain of GN is sharp, shooting or burning and can last for hours. Painful attacks can be triggered by cold, noise, swallowing or touch, but triggers are usually unique to the sufferer. Other related symptoms that may be experienced include increased salivation, bitter taste, tinnitus and vertigo.
GN is rare, and only limited data is available regarding the incidence, prevalence, and risk factors associated with this condition. Middle-aged adults, however, seem to be predominantly affected, women more than men.
GN may be caused by compression of somatic sensory branch of cranial nerve VII which goes through the nervus intermedius. In sufferers of GN, signals sent along these nerves are altered and interpreted by the geniculate ganglion (a structure in the brain) as GN pain. GN may also develop following herpes zoster oticus (Ramsay Hunt syndrome), where cold sores occur on the ear drum or ear. This may also be associated with facial paresis (weakness), tinnitus, vertigo and deafness. Disorders of lacrimation, salivation and/or taste sometimes accompany the pain. There is a common association with herpes zoster.
Fourth cranial nerve palsy also known as Trochlear nerve palsy, is a condition affecting Cranial Nerve 4 (IV), the Trochlear Nerve, which is one of the Cranial Cranial Nerves that causes weakness or paralysis to the Superior Oblique Muscle that it innervates. This condition often causes vertical or near vertical double vision as the weakened muscle prevents the eyes from moving in the same direction together.
Because the fourth cranial nerve is the thinnest and has the longest intracranial course of the cranial nerves, it is particularly vulnerable to traumatic injury.
To compensate for the double-vision resulting from the weakness of the superior oblique, patients characteristically tilt their head down and to the side opposite the affected muscle.
When present at birth, it is known as congenital fourth nerve palsy.
The number of new cases of Bell's palsy is about 20 per 100,000 population per year. The rate increases with age. Bell’s palsy affects about 40,000 people in the United States every year. It affects approximately 1 person in 65 during a lifetime.
A range of annual incidence rates have been reported in the literature: 15, 24, and 25–53 (all rates per 100,000 population per year). Bell’s palsy is not a reportable disease, and there are no established registries for people with this diagnosis, which complicates precise estimation.
ATN is usually attributed to inflammation or demyelination, with increased sensitivity of the trigeminal nerve. These effects are believed to be caused by infection, demyelinating diseases, or compression of the trigeminal nerve (by an impinging vein or artery, a tumor, or arteriovenous malformation) and are often confused with dental problems. An interesting aspect is that this form affects both men and women equally and can occur at any age, unlike typical trigeminal neuralgia, which is seen most commonly in women. Though TN and ATN most often present in the fifth decade, cases have been documented as early as infancy.
Most people with Bell's palsy start to regain normal facial function within 3 weeks—even those who do not receive treatment. In a 1982 study, when no treatment was available, of 1,011 patients, 85% showed first signs of recovery within 3 weeks after onset. For the other 15%, recovery occurred 3–6 months later. After a follow-up of at least 1 year or until restoration, complete recovery had occurred in more than two-thirds (71%) of all patients. Recovery was judged moderate in 12% and poor in only 4% of patients. Another study found that incomplete palsies disappear entirely, nearly always in the course of one month. The patients who regain movement within the first two weeks nearly always remit entirely. When remission does not occur until the third week or later, a significantly greater part of the patients develop sequelae. A third study found a better prognosis for young patients, aged below 10 years old, while the patients over 61 years old presented a worse prognosis.
Major complications of the condition are chronic loss of taste (ageusia), chronic facial spasm, facial pain and corneal infections. To prevent the latter, the eyes may be protected by covers, or taped shut during sleep and for rest periods, and tear-like eye drops or eye ointments may be recommended, especially for cases with complete paralysis. Where the eye does not close completely, the blink reflex is also affected, and care must be taken to protect the eye from injury.
Another complication can occur in case of incomplete or erroneous regeneration of the damaged facial nerve. The nerve can be thought of as a bundle of smaller individual nerve connections that branch out to their proper destinations. During regrowth, nerves are generally able to track the original path to the right destination - but some nerves may sidetrack leading to a condition known as synkinesis. For instance, regrowth of nerves controlling muscles attached to the eye may sidetrack and also regrow connections reaching the muscles of the mouth. In this way, movement of one also affects the other. For example, when the person closes the eye, the corner of the mouth lifts involuntarily.
Around 9% of patients have some sort of sequelae after Bell's palsy, typically the synkinesis already discussed, or spasm, contracture, tinnitus and/or hearing loss during facial movement or crocodile tear syndrome. This is also called gustatolacrimal reflex or Bogorad's Syndrome and involves the sufferer shedding tears while eating. This is thought to be due to faulty regeneration of the facial nerve, a branch of which controls the lacrimal and salivary glands. Gustatorial sweating can also occur.
The incidence of hemifacial spasm is approximately 0.8 per 100,000 persons. Hemifacial spasm is more prevalent among females over 40 years of age. The estimated prevalence for women is 14.5 per 100,000 and 7.4 per 100,000 in men. Prevalence for hemifacial spasm increase with age, reaching 39.7 per 100,000 for those aged 70 years and older. One study divided 214 hemifacial patients based on the cause of the disease. The patients who had a compression in the facial nerve at the end of the brain stem as the primary hemifacial spasm and patients who had peripheral facial palsy or nerve lesion due to tumors, demyelination, trauma, or infection as secondary hemifacial spasm. The study found that 77% of hemifacial spasm is due to primary hemifacial spasm and 23% is due to secondary hemifacial spasm. The study also found both sets of patients to share similar age at onset, male to female ratios, and similar affected side. Another study with 2050 patients presented with hemifacial spasm between 1986 and 2009, only 9 cases were caused by a cerebellopontine angle syndrome, an incidence of 0.44%.
People with MMND become progressively more weak with time. Generally, affected individuals survive up to 30 years after they are diagnosed.
In 1983, Bringewald postulated that superior oblique myokymia resulted from vascular compression of the trochlear nerve (fourth cranial nerve), which controls the action of the superior oblique muscle in the eye. By 1998, there had been only one reported case of compression of the trochlear nerve by vessels.
More recently, magnetic resonance imaging experiments have shown that neurovascular compression at the root exit zone of the trochlear nerve can result in superior oblique myokymia.
In contrast, pseudobulbar palsy is a clinical syndrome similar to bulbar palsy but in which the damage is located in upper motor neurons of the corticobulbar tracts in the mid-pons (i.e., in the cranial nerves IX-XII), that is the nerve cells coming down from the cerebral cortex innervating the motor nuclei in the medulla. This is usually caused by stroke.
The origins of the vast majority of congenital oculomotor palsies are unknown, or idiopathic to use the medical term. There is some evidence of a familial tendency to the condition, particularly to a partial palsy involving the superior division of the nerve with an autosomal recessive inheritance. The condition can also result from aplasia or hypoplasia of one or more of the muscles supplied by the oculomotor nerve. It can also occur as a consequence of severe birth trauma.
Foville's syndrome is caused by the blockage of the perforating branches of the basilar artery in the region of the brainstem known as the pons. Most frequently caused by vascular disease or tumors involving the dorsal pons.[3]
Structures affected by the infarct are the PPRF, nuclei of cranial nerves VI and VII, corticospinal tract, medial lemniscus, and the medial longitudinal fasciculus. There's involvement of the fifth to eighth cranial nerves, central sympathetic fibres (Horner syndrome) and horizontal gaze palsy.[3]
In most cases, the cause of acoustic neuromas is unknown. The only statistically significant risk factor for developing an acoustic neuroma is having a rare genetic condition called neurofibromatosis type 2 (NF2). There are no confirmed environmental risk factors for acoustic neuroma. There are conflicting studies on the association between acoustic neuromas and cellular phone use and repeated exposure to loud noise. In 2011, an arm of the World Health Organization released a statement listing cell phone use as a low grade cancer risk. The Acoustic Neuroma Association recommends that cell phone users use a hands-free device.
Meningiomas are significantly more common in women than in men; they are most common in middle-aged women. Two predisposing factors associated with meningiomas for which at least some evidence exists are exposure to ionizing radiation (cancer treatment of brain tumors) and hormone replacement therapy.
Bulbar palsy refers to a range of different signs and symptoms linked to impairment of function of the cranial nerves IX, X, XI and XII, which occurs due to a lower motor neuron lesion in the medulla oblongata or from lesions of the lower cranial nerves outside the brainstem.
The cause of MMND has not yet been determined. There are cases where MMND appears to be inherited. However, no relevant genes have been identified.
MMND affects many cranial nerves, particularly involving the 7th (facial nerve) and 9th to the 12th cranial nerves (in order: glossopharyngeal nerve, vagus nerve, accessory nerve, spinal accessory nerve).
Oculomotor palsy can arise as a result of a number of different conditions. Non traumatic pupil-sparing oculomotor nerve palsies are often referred to as a 'medical third' with those affecting the pupil being known as a 'surgical third'.