Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This disorder is caused by an abnormality of the TBCE gene, the locus for which is on Chromosome 1q42.3. The locus is a 230 kb region of gene with identified deletions and mutations in affected individuals. There are rare cases of the disorder not being due to a TBCE gene abnormality.
The actual incidence of this disease is not known, but only 243 cases have been reported in the scientific literature, suggesting an incidence of on the order of one affected person in ten million people.
Zimmermann–Laband syndrome (ZLS), also known as Laband–Zimmermann syndrome, and Laband's syndrome, is an extremely rare autosomal dominant congenital disorder.
It is likely that this syndrome is inherited in an autosomal dominant fashion, however there may be a recessive form with hypotonia and developmental delay.
Nablus mask-like facial syndrome is a microdeletion syndrome triggered by a deletion at chromosome 8 q22.1 that causes a mask-like facial appearance in those affected.
It is characterized by a narrowing of the eyes, tight, glistening facial skin, and a flat, broad nose. Other features of the syndrome include malformed ears, unusual hair patterns on the scalp, bent fingers and toes and joint deformities in the hands and feet, unusual teeth, mild developmental delay, cryptorchidism, and a generally happy disposition. It is a rare genetic disorder by inheritance found in Palestinian people named after Nablus city in the West Bank. It is part of many new genetic disorders of newborns that is increasing exponentially in Arabs in recent years as reported by Centre for Arab Genomic Studies in Dubai.
Sanjad-Sakati syndrome is a rare autosomal recessive genetic condition seen in offspring of Middle Eastern origin. It was first described in Saudi Arabia, but has been seen in Qatari, Kuwaiti, Omani and other children from the Middle East as well as elsewhere. The condition is caused by mutations or deletions in the TBCE gene of Chromosome No.1.
The condition is characterised by a triad of growth and mental retardation, hypoparathyroidism and dysmorphism.
Nevo Syndrome is considered to be a rare disorder. Since its first appearance in 1974, only a handful of cases have been reported. Studies have shown showing similarities between Nevo Syndrome with Ehlers-Danlos syndrome as well as Sotos syndrome. There is an astounding overlap of phenotypic manifestations between Nevo Syndrome and the more frequent Sotos syndrome, which are both caused by the NSD1 deletion. Sotos syndrome is an autosomal dominant condition associated with learning disabilities, a distinctive facial appearance, and overgrowth. Studies have shown an overwhelming occurrence (half of those involved in the study) of Nevo syndrome in those individuals of Middle-Eastern descent.
Symptoms include gingival fibromatosis, associated with hypoplasia of the distal phalanges, nail dysplasia, joint hypermobility, and sometimes hepatosplenomegaly. The nose and pinnae are usually large and poorly developed, which gives the individuals with the syndrome abnormal facial characteristics. Mental retardation may also occur. Both males and females are equally affected. Gingival fibromatosis is usually present at birth or appears short after. The term Zimmermann–Laband was coined by Carl Jacob Witkop in 1971.
Cross–McKusick–Breen syndrome (also known as "Cross syndrome", "hypopigmentation and microphthalmia", and "oculocerebral-hypopigmentation syndrome") is an extremely rare disorder characterized by white skin, blond hair with yellow-gray metallic sheen, small eyes with cloudy corneas, jerky nystagmus, gingival fibromatosis and severe mental and physical retardation.
It was characterized in 1967.
The prognosis is poor; affected individuals are either stillborn or die shortly after birth. The longest survival reported in literature is of 134 days.
This syndrome is transmitted as an autosomal recessive disorder and there is a risk for recurrence of 25% in future pregnancies.
Nakajo syndrome, also called nodular erythema with digital changes, is a rare autosomal recessive congenital disorder first reported in 1939 by A. Nakajo in the offspring of consanguineous (blood relative) parents. The syndrome can be characterized by erythema (reddened skin), loss of body fat in the upper part of the body, and disproportionately large eyes, ears, nose, lips, and fingers.
Craniofrontonasal dysplasia is a very rare genetic condition. As such there is little information and no consensus in the published literature regarding the epidemiological statistics.
The incidence values that were reported ranged from 1:100,000 to 1:120,000.
Some people may have some mental slowness, but children with this condition often have good social skills. Some males may have problems with fertility.
The original report was of a family in Cardiff, United Kingdom. There are subsequent reports of patients from the USA, France, Australia, UAE, India and from Cuba.
Nevo Syndrome is an autosomal recessive disorder. Most times in which a child is afflicted with Nevo Syndrome, both their parents are of average height and weight. It is only until after birth when the characteristic physical traits associated with disease are manifested, and the disorder is actually diagnosed. One study showed that despite the increased growth rates, the patient was completely healthy up until age 6, when he was admitted into the hospital. Nevo syndrome is usually associated with early childhood fatality. Children with Nevo Syndrome have a high occurrence of death due to cardiac arrest because their developing hearts cannot keep up with their overgrown body.
The incidence rate of ATR-16 syndrome is not easy to estimate and it is thought to be underdiagnosed. Scientists have described more than 20 cases as of 2013.
Nakajo syndrome is inherited in an autosomal recessive manner. This means the defective gene responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
The incidence of Fraser syndrome is 0.043 per 10,000 live born infants and 1.1 in 10,000 stillbirths, making it a rare syndrome.
The RASopathies are developmental syndromes caused by germline mutations (or in rare cases by somatic mosaicism) in genes that alter the Ras subfamily and mitogen-activated protein kinases that control signal transduction, including:
- Capillary malformation-AV malformation syndrome
- Autoimmune lymphoproliferative syndrome
- Cardiofaciocutaneous syndrome
- Hereditary gingival fibromatosis type 1
- Neurofibromatosis type 1
- Noonan syndrome
- Costello syndrome, Noonan-like
- Legius syndrome, Noonan-like
- Noonan syndrome with multiple lentigines, formerly called LEOPARD syndrome, Noonan-like
Costello and Noonan syndrome are similar to CFC and their phenotypic overlap may be due to the biochemical relationship of the genes mutated in each syndrome to each other. Genes that are mutated in all three of these syndromes encode proteins that function in the MAP kinase pathway.
- Mutations that cause CFC are found in the KRAS, BRAF, MEK1 and MEK2 genes.
- Costello syndrome is caused by mutations in HRAS.
- Mutations that cause Noonan syndrome have been found in PTPN11 and SOS1.
The relative severity of CFC when compared to Noonan syndrome may reflect the position in the biochemical pathway each gene occupies.
- Shp2, the protein product of the PTPN11, appears to regulate the MAP kinase pathway at or above the level of SOS1.
- SOS1 in turn regulates the activities of RAS, RAF, MEK, ERK and p90RSK.
- SOS1 has been demonstrated to be a target of negative feedback by ERK and p90RSK.
Thus, any activating mutation downstream of SOS1 may be subject to less regulation that may mitigate the consequence of such mutations giving rise to the phenotypic differences seen between these syndromes.
Cooks syndrome is a hereditary disorder which is characterized in the hands by bilateral nail hypoplasia on the thumb, index finger, and middle finger, absence of fingernails (anonychia) on the ring finger and little finger, lengthening of the thumbs, and bulbousness of the fingers. In the feet, it is characterized by absence of toenails and absence/hypoplasia of the distal phalanges. In the second study of this disorder, it was found that the intermediate phalanges, proximal phalanges, and metacarpals were unaffected.
The disorder was first described by Cooks "et al." in 1985 after being discovered in two generations of one family. It was proposed that the inheritance of the disorder is autosomal dominant. A second family, this with three affected generations, confirmed that the inheritance of the disorder is autosomal dominant. Although several genetic disorders exist which can cause anonychia and onychodystrophy, such disorders often cause other anomalies such as deafness, mental retardation, and defects of the hair, eyes, and teeth. Cooks syndrome is not known to cause any such anomalies.
In 1999, a pair of siblings was found with brachydactyly type B. Because the disorder primarily affected the nails and distal phalanges, the research group concluded that brachydactyly type B and Cooks syndrome are the same disorder. However, in 2007, a 2-year-old girl was found with symptoms consistent with both brachydactyly type B and Cooks syndrome. It was found that the two syndromes were distinct clinically, radiologically, and genetically.
ODD is typically an autosomal dominant condition, but can be inherited as a recessive trait. It is generally believed to be caused by a mutation in the gene GJA1, which codes for the gap junction protein connexin 43. Slightly different mutations in this gene may explain the different way the condition manifests in different families. Most people inherit this condition from one of their parents, but new cases do arise through novel mutations. The mutation has high penetrance and variable expression, which means that nearly all people with the gene show signs of the condition, but these signs can range from very mild to very obvious.
There are currently no known genes linked to Kapur–Toriello syndrome.
Kapur–Toriello syndrome is a rare autosomal recessive genetic disorder. The defining feature of Kapur–Toriello syndrome is abnormal morphology of the columella, which extends below the margin of the nares.
More than 80% of children with Patau syndrome die within the first year of life. Children with the mosaic variation are usually affected to a lesser extent. In a retrospective Canadian study of 174 children with trisomy 13, median survival time was 12.5 days. One and ten year survival was 19.8% and 12.9% respectively.